An instrumental variable approach under dependent censoring

被引:1
|
作者
Crommen, Gilles [1 ]
Beyhum, Jad [2 ]
Van Keilegom, Ingrid [1 ]
机构
[1] Katholieke Univ Leuven, ORSTAT, Naamsestr 69, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Econ, Naamsestr 69, B-3000 Leuven, Belgium
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Dependent censoring; Causal inference; Instrumental variable; Control function; Survival analysis; COPULA-GRAPHIC ESTIMATOR; NONPARAMETRIC-ESTIMATION; QUANTILE REGRESSION; SURVIVAL FUNCTION; IDENTIFICATION; MODELS;
D O I
10.1007/s11749-023-00903-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the problem of inferring the causal effect of a variable Z on a dependently censored survival time T. We allow for unobserved confounding variables, such that the error term of the regression model for T is dependent on the confounded variable Z. Moreover, T is subject to dependent censoring. This means that T is right censored by a censoring time C, which is dependent on T (even after conditioning out the effects of the measured covariates). A control function approach, relying on an instrumental variable, is leveraged to tackle the confounding issue. Further, it is assumed that T and C follow a joint regression model with bivariate Gaussian error terms and an unspecified covariance matrix, such that the dependent censoring can be handled in a flexible manner. Conditions under which the model is identifiable are given, a two-step estimation procedure is proposed, and it is shown that the resulting estimator is consistent and asymptotically normal. Simulations are used to confirm the validity and finite-sample performance of the estimation procedure. Finally, the proposed method is used to estimate the causal effect of job training programs on unemployment duration.
引用
收藏
页码:473 / 495
页数:23
相关论文
共 50 条
  • [1] Instrumental variable quantile regression under random right censoring
    Beyhum, Jad
    Tedesco, Lorenzo
    Van Keilegom, Ingrid
    ECONOMETRICS JOURNAL, 2024, 27 (01) : 21 - 36
  • [2] Quantile regression under dependent censoring with unknown association
    D'Haen, Myrthe
    Van Keilegom, Ingrid
    Verhasselt, Anneleen
    LIFETIME DATA ANALYSIS, 2025, : 253 - 299
  • [3] A Semiparametric Instrumental Variable Approach to Optimal Treatment Regimes Under Endogeneity
    Cui, Yifan
    Tchetgen Tchetgen, Eric
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 116 (533) : 162 - 173
  • [4] A flexible instrumental variable approach
    Marra, Giampiero
    Radice, Rosalba
    STATISTICAL MODELLING, 2011, 11 (06) : 581 - 603
  • [5] The challenging interpretation of instrumental variable estimates under monotonicity
    Swanson, Sonja A.
    Hernan, Miguel A.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2018, 47 (04) : 1289 - 1297
  • [6] Factorial survival analysis for treatment effects under dependent censoring
    Emura, Takeshi
    Ditzhaus, Marc
    Dobler, Dennis
    Murotani, Kenta
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2024, 33 (01) : 61 - 79
  • [7] NONPARAMETRIC INSTRUMENTAL VARIABLE ESTIMATION UNDER MONOTONICITY
    Chetverikov, Denis
    Wilhelm, Daniel
    ECONOMETRICA, 2017, 85 (04) : 1303 - 1320
  • [8] Instrumental Variable Estimation with a Stochastic Monotonicity Assumption
    Small, Dylan S.
    Tan, Zhiqiang
    Ramsahai, Roland R.
    Lorch, Scott A.
    Brookhart, M. Alan
    STATISTICAL SCIENCE, 2017, 32 (04) : 561 - 579
  • [9] Instrumental variable estimation of the causal hazard ratio
    Wang, Linbo
    Tchetgen, Eric Tchetgen
    Martinussen, Torben
    Vansteelandt, Stijn
    BIOMETRICS, 2023, 79 (02) : 539 - 550
  • [10] Estimation of location and scale functionals in nonparametric regression under copula dependent censoring
    Sujica, Aleksandar
    Van Keilegom, Ingrid
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (02): : 306 - 335