The joint application of biochar and nitrogen enhances fruit yield, quality and water-nitrogen productivity of water-stressed greenhouse tomato under drip fertigation

被引:10
|
作者
Abdelghany, Ahmed Elsayed [1 ,2 ]
Dou, Zhiyao [1 ]
Alashram, Mohamed G. [2 ,3 ]
Eltohamy, Kamel Mohamed [2 ,4 ]
Elrys, Ahmed S. [5 ]
Liu, Xiaoqiang [1 ]
Wu, You [1 ]
Cheng, Minghui [1 ]
Fan, Junliang [1 ]
Zhang, Fucang [1 ]
机构
[1] Northwest A&F Univ, Key Lab Agr Soil & Water Engn Arid & Semiarid Area, Minist Educ, Yangling 712100, Peoples R China
[2] Agr & Biol Inst, Natl Res Ctr, Water Relat & Field Irrigat Dept, Cairo 12622, Egypt
[3] Northwest A&F Univ, Coll Life Sci, Yangling 712100, Shaanxi, Peoples R China
[4] Zhejiang Univ, Coll Environm & Resources Sci, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Hangzhou 310058, Peoples R China
[5] Zagazig Univ, Fac Agr, Soil Sci Dept, Zagazig 44511, Egypt
关键词
Crop water productivity; Partial factor productivity of nitrogen; Fruit yield; Fruit quality; SANDY LOAM SOIL; USE EFFICIENCY; MECHANISMS; FERTILIZER; DEFICIT; TEMPERATURE; IRRIGATION; PHOSPHATE; IMPACT; MAIZE;
D O I
10.1016/j.agwat.2023.108605
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The biochar application has been reported to have a positive effect on crop yield and nutrient utilization. However, the effects of the joint application of biochar and nitrogen (N) on soil physical properties, fruit yield, quality, crop water productivity (WP) and partial factor productivity of nitrogen (PFPN) of water-stressed greenhouse tomato under drip fertigation remain poorly understood. In this study, a two-season experiment was conducted on greenhouse tomato in autumn 2021 and spring 2022, involving two biochar application rates (0 and 30 t ha-1 only in the first season before sowing), two N fertilization rates (175 and 250 kg N ha-1), and three irrigation levels (100%, 75%, and 50% of crop evapotranspiration). The results showed that biochar application significantly decreased soil bulk density by 7-13%, but significantly increased soil porosity by 5.5%- 10% and fruit yield by 43.2-73.8% compared with the non-biochar treatment. The biochar application significantly affected the total soluble solids (TSS), soluble sugar (SS), and vitamin C of tomato fruits. The interaction of biochar application and N fertilization increased PFPN and WP by 67.4% and 76.3% in autumn 2021, and by 38.1% and 51.8% in spring 2022, respectively. Biochar rate and irrigation level had significant effects on TSS and SS contents in both seasons, but N rate significantly affected TSS in autumn 2021 only and SS in both seasons. The interaction of biochar application, N rate and irrigation level had significant effects on fruit yield. The effects of biochar rate, N rate, and irrigation level on PFPN were significant in both growing seasons. The joint application of biochar and nitrogen significantly enhanced fruit yield, quality and water-nitrogen productivity of water-stressed greenhouse tomato. The Principal Component Analysis (PCA) revealed that PC1 accounted for 47.7% and 48%of the variation in autumn 2021 and spring 2022, while PC2 accounted for 14.6% and 15.6% in autumn 2021 and spring 2022, respectively. This study underscores the significance of biochar application in drip-fertigated greenhouse tomato cultivation and highlights its sustained positive effects in the next growing season.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Responses of grain yield and water-nitrogen dynamic of drip-irrigated winter wheat (Triticum aestivum L.) to different nitrogen fertigation and water regimes in the North China Plain
    Hamani, Abdoul Kader Mounkaila
    Abubakar, Sunusi Amin
    Si, Zhuanyun
    Kama, Rakhwe
    Gao, Yang
    Duan, Aiwang
    AGRICULTURAL WATER MANAGEMENT, 2023, 288
  • [22] Grain Yield, Water Productivity, and Soil Nitrogen Dynamics in Drip Irrigated Rice under Varying Nitrogen Rates
    Rajwade, Yogesh Anand
    Swain, Dillip Kumar
    Tiwari, Kamlesh Narayan
    Bhadoria, Pratap Bhanu Singh
    AGRONOMY JOURNAL, 2018, 110 (03) : 868 - 878
  • [23] Optimized Planting Density and Nitrogen Rate Increased Grain Yield and Water-Nitrogen Use Efficiency of Two Maize Cultivars under Mulched Drip Fertigation by Improving Population Photosynthesis and Grain-Filling Characteristics
    Lai, Zhenlin
    Kou, Hongtai
    Fan, Junliang
    Yang, Rui
    Xu, Xinyu
    Zhang, Fucang
    Li, Sien
    WATER, 2023, 15 (01)
  • [24] Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation
    Liu, Kai
    Liao, Huan
    Hao, Haibo
    Hou, Zhenan
    AGRICULTURAL WATER MANAGEMENT, 2024, 296
  • [25] Effects of nitrogen reduction on the agronomic characteristics, quality, and water and fertilizer use efficiency of tomato (lycopersicon esculintum mill.) between drip fertigation and negative-pressure fertigation
    Wang, Jiajia
    Wang, Changjun
    Long, Huaiyu
    Bryant, Ray
    Drohan, Patrick J.
    Qu, Fengchen
    Liu, Dichuan
    Zhu, Guolong
    Wang, Zhuan
    Wang, Le
    IRRIGATION SCIENCE, 2025, 43 (02) : 305 - 319
  • [26] Effects of water-nitrogen coupling on soil water and nitrogen, photosynthesis, yield and water use of lettuce under different application rates of poly-γ-glutamic acid
    Liu, Lu
    Shi, Wenjuan
    Pang, Linna
    IRRIGATION AND DRAINAGE, 2023, 72 (01) : 105 - 118
  • [27] Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato
    Li, Yanmei
    Sun, Yanxin
    Liao, Shangqiang
    Zou, Guoyuan
    Zhao, Tongke
    Chen, Yanhua
    Yang, Jungang
    Zhang, Lin
    AGRICULTURAL WATER MANAGEMENT, 2017, 186 : 139 - 146
  • [28] Root Growth, Fruit Yield and Water Use Efficiency of Greenhouse Grown Tomato Under Different Irrigation Regimes and Nitrogen Levels
    Wang, Xiukang
    Yun, Jia
    Shi, Peng
    Li, Zhanbin
    Li, Peng
    Xing, Yingying
    JOURNAL OF PLANT GROWTH REGULATION, 2019, 38 (02) : 400 - 415
  • [29] Subsurface irrigation with ceramic emitters: Optimal working water head improves yield, fruit quality and water productivity of greenhouse tomato
    Liu, Xufei
    Zhang, Lin
    Liu, Qi
    Yang, Fuhui
    Han, Mengxue
    Yao, Shengyu
    SCIENTIA HORTICULTURAE, 2023, 310
  • [30] Yield Productivity and Nitrogen Uptake of Wheat Crop Are Highly Dependent on Irrigation Water Availability and Quality under Water-Limited Conditions
    Mahdy, Ahmed Mohamed
    Fathi, Nieven O.
    Hafez, Mohamed
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2023, 54 (06) : 836 - 854