Engineering hosts for Zn anodes in aqueous Zn-ion batteries

被引:112
|
作者
Zhu, Yunhai [1 ]
Liang, Guojin [2 ]
Cui, Xun [1 ]
Liu, Xueqin [1 ]
Zhong, Haixia [4 ]
Zhi, Chunyi [3 ]
Yang, Yingkui [1 ]
机构
[1] Wuhan Text Univ, State Key Lab New Text Mat & Adv Proc Technol, Wuhan 430200, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Fac Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
[4] Chinese Acad Sci, State Key Lab Rare Earth Resource Utilizat, Changchun Inst Appl Chem, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
ZINC ANODE; HIGH-CAPACITY; ELECTROLYTE; CHALLENGES; STRATEGIES; CHEMISTRY; METALS; LIFE;
D O I
10.1039/d3ee03584k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous zinc-ion batteries (ZIBs) distinguish themselves among the numerous viable alternatives to lithium-ion batteries on account of their potential advantages, which encompass enhanced safety, cost-effectiveness, and eco-friendliness. However, the metal zinc (Zn) that makes ZIBs competitive is now being plagued by dendrite growth and spontaneous side reactions (hydrogen evolution reaction and water-induced corrosion). These unavoidable parasitic reactions degrade the output energy/power density and shorten the actual lifespan of the Zn anode, rendering it infeasible for ZIBs to access the practical energy storage system. Herein, we systematically summarize the host-design strategies for the Zn anode regarding substrate (accommodation of Zn deposits) and interface (protection of Zn anode) fabrications. In addition, for the purpose of developing a Zn anode that is chemically and electrochemically stable, we thoroughly elucidate the internal mechanisms of the regulation strategies while offering guidance for the rational design of Zn anodes. This review may suggest a prospective guideline for developing high-performance Zn anodes for use in sustainable ZIBs. This review systematically summarizes the host-design strategies for Zn anodes regarding substrate and interface fabrication, aiming to provide a prospective guideline for developing high-performance Zn anodes.
引用
收藏
页码:369 / 385
页数:18
相关论文
共 50 条
  • [1] Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn-Ion Batteries
    Zheng, Jiaxian
    Huang, Zihao
    Ming, Fangwang
    Zeng, Ye
    Wei, Binbin
    Jiang, Qiu
    Qi, Zhengbing
    Wang, Zhoucheng
    Liang, Hanfeng
    SMALL, 2022, 18 (21)
  • [2] Electrode/electrolyte interfacial engineering for aqueous Zn-ion batteries
    Tang, Yongwei
    Li, Jin-Hong
    Xu, Chen-Liang
    Liu, Mengting
    Xiao, Bing
    Wang, Peng-Fei
    CARBON NEUTRALIZATION, 2023, 2 (02): : 186 - 212
  • [3] Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries
    Yi, Zhehan
    Chen, Guoyuan
    Hou, Feng
    Wang, Liqun
    Liang, Ji
    ADVANCED ENERGY MATERIALS, 2021, 11 (01)
  • [4] Electrolyte engineering enables stable Zn-Ion deposition for long-cycling life aqueous Zn-ion batteries
    Wu, Yan
    Zhu, Zhaohua
    Shen, Dong
    Chen, Lina
    Song, Tianyi
    Kang, Tianxing
    Tong, Zhongqiu
    Tang, Yongbing
    Wang, Hui
    Lee, Chun Sing
    ENERGY STORAGE MATERIALS, 2022, 45 : 1084 - 1091
  • [5] Engineering Interphasial Chemistry for Zn Anodes in Aqueous Zinc Ion Batteries
    Zhu, Boyuan
    Tang, Jiahao
    Yao, Zhenjie
    Cui, Junjie
    Hou, Yangrui
    Chen, Jiarong
    Tang, Li
    Fu, Yongsheng
    Zhang, Wenyao
    Zhu, Junwu
    Chem and Bio Engineering, 2024, 1 (05): : 381 - 413
  • [6] Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries
    Jia, Hao
    Wang, Ziqi
    Tawiah, Benjamin
    Wang, Yidi
    Chan, Cheuk-Ying
    Fei, Bin
    Pan, Feng
    NANO ENERGY, 2020, 70
  • [7] Insight on Organic Molecules in Aqueous Zn-Ion Batteries with an Emphasis on the Zn Anode Regulation
    Wang, Donghong
    Li, Qing
    Zhao, Yuwei
    Hong, Hu
    Li, Hongfei
    Huang, Zhaodong
    Liang, Guojin
    Yang, Qi
    Zhi, Chunyi
    ADVANCED ENERGY MATERIALS, 2022, 12 (09)
  • [8] Dendrite-free Zn anodes enabled by interface engineering for non-alkaline Zn-air and Zn-ion batteries
    Fang, Tao
    Wu, Mengxue
    Lu, Feiyu
    Zhou, Zhengyi
    Fu, Yanpeng
    Shi, Zhicong
    ENERGY MATERIALS, 2024, 4 (04):
  • [9] In situ construction of a static-dynamic hybrid interface toward stable Zn anodes for aqueous Zn-ion batteries
    Liu, Baohua
    Yu, Luyan
    Xiao, Qinghua
    Zhang, Shilin
    Li, Guanjie
    Ren, Kaixin
    Zhu, Yuxuan
    Wang, Chao
    Wang, Qinghong
    CHEMICAL SCIENCE, 2024, 15 (39) : 16118 - 16124
  • [10] Protecting Zn anodes by atomic layer deposition of ZrO2 to extend the lifetime of aqueous Zn-ion batteries
    Sun, Shichen
    Wen, Yeting
    Billings, Aidan
    Rajabi, Roya
    Wang, Boyu
    Zhang, Kangkang
    Huang, Kevin
    ENERGY ADVANCES, 2024, 3 (01): : 299 - 306