TFL-DT: A Trust Evaluation Scheme for Federated Learning in Digital Twin for Mobile Networks

被引:87
|
作者
Guo, Jingjing [1 ]
Liu, Zhiquan [2 ]
Tian, Siyi [1 ]
Huang, Feiran [2 ]
Li, Jiaxing [1 ]
Li, Xinghua [1 ]
Igorevich, Kostromitin Konstantin [3 ]
Ma, Jianfeng [4 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Peoples R China
[2] Jinan Univ, Coll Cyber Secur, Guangzhou 510632, Peoples R China
[3] South Ural State Univ, Dept Informat Secur, Chelyabinsk 454080, Russia
[4] Xidian Univ, State Key Lab Integrated Serv Network, Xian 710071, Peoples R China
基金
俄罗斯科学基金会; 中国国家自然科学基金; 美国国家科学基金会;
关键词
Federated learning; digital twin; mobile networks; trust evaluation; MODEL;
D O I
10.1109/JSAC.2023.3310094
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the distributed collaboration and privacy protection features, federated learning is a promising technology to perform the model training in virtual twins of Digital Twin for Mobile Networks (DTMN). In order to enhance the reliability of the model, it is always expected that the users involved in federated learning have trustworthy behaviors. Yet, available trust evaluation schemes for federated learning have the problems of considering simplex evaluation factor and using coarse-grained trust calculation method. In this paper, we propose a trust evaluation scheme for federated learning in DTMN, which takes direct trust evidence and recommended trust information into account. A user behavior model is designed based on multiple attributes to depict users' behavior in a fine-grained manner. Furthermore, the trust calculation methods for local trust value and recommended trust value of a user are proposed using the data of user behavior model as trust evidence. Several experiments were conducted to verify the effectiveness of the proposed scheme. The results show that the proposed method is able to evaluate the trust levels of users with different behavior patterns accurately. Moreover, it performs better in resisting attacks from users that alternately execute good and bad behaviors compared with state-of-the-art scheme. The code for the method proposed in this paper is available at: https://web.xidian.edu.cn/jjguo/en/code.html.
引用
收藏
页码:3548 / 3560
页数:13
相关论文
共 50 条
  • [1] TFL-DT: A Trust Evaluation Scheme for Federated Learning in Digital Twin for Mobile Networks
    Guo, Jingjing
    Liu, Zhiquan
    Tian, Siyi
    Huang, Feiran
    Li, Jiaxing
    Li, Xinghua
    Igorevich, Kostromitin Konstantin
    Ma, Jianfeng
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (10) : 3548 - 3560
  • [2] Digital Twin Enhanced Federated Reinforcement Learning With Lightweight Knowledge Distillation in Mobile Networks
    Zhou, Xiaokang
    Zheng, Xuzhe
    Cui, Xuesong
    Shi, Jiashuai
    Liang, Wei
    Yan, Zheng
    Yang, Laurence T.
    Shimizu, Shohei
    Wang, Kevin I-Kai
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (10) : 3191 - 3211
  • [3] Intelligent digital twin for federated learning in AIoT networks
    Rizwan, Atif
    Ahmad, Rashid
    Khan, Anam Nawaz
    Xu, Rongxu
    Kim, Do Hyeun
    INTERNET OF THINGS, 2023, 22
  • [4] Federated Learning for Enablement of Digital Twin
    Patwardhan, Amit
    Thaduri, Adithya
    Karim, Ramin
    Castano, Miguel
    IFAC PAPERSONLINE, 2022, 55 (02): : 114 - 119
  • [5] Dynamic Digital Twin and Federated Learning With Incentives for Air-Ground Networks
    Sun, Wen
    Xu, Ning
    Wang, Lu
    Zhang, Haibin
    Zhang, Yan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (01): : 321 - 331
  • [6] Communication-Efficient Federated Learning for Digital Twin Edge Networks in Industrial IoT
    Lu, Yunlong
    Huang, Xiaohong
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5709 - 5718
  • [7] Communication-Efficient Federated Learning and Permissioned Blockchain for Digital Twin Edge Networks
    Lu, Yunlong
    Huang, Xiaohong
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (04) : 2276 - 2288
  • [8] Incentive-Based Federated Learning for Digital-Twin-Driven Industrial Mobile Crowdsensing
    Li, Beibei
    Shi, Yaxin
    Kong, Qinglei
    Du, Qingyun
    Lu, Rongxing
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (20) : 17851 - 17864
  • [9] Blockchain-Enabled Secure Federated Learning for Digital Twin Networks
    Cai, Lingyi
    Hu, Qiwei
    Jiang, Tao
    Niyato, Dusit
    IEEE WIRELESS COMMUNICATIONS, 2024,
  • [10] Adaptive Federated Learning and Digital Twin for Industrial Internet of Things
    Sun, Wen
    Lei, Shiyu
    Wang, Lu
    Liu, Zhiqiang
    Zhang, Yan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5605 - 5614