Lp Boundedness of Fourier Integral Operators in the Class S1,0

被引:0
作者
Hwang, Ing-Lung [1 ]
机构
[1] Natl Chung Cheng Univ Taiwan, Dept Math, Minxiong 621003, Chiayi County, Peoples R China
关键词
Fourier integral operator; L-p-boundedness;
D O I
10.1007/s10114-023-9399-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the following properties: (1) Let a is an element of Lambda(m0)(1,0,k,k') (R-n x R-n) with m(0) = -1 vertical bar 1/p - 1/2 vertical bar(n - 1), n >= 2 (1 < p <= 2, k > n/p, k' > 0; 2 <= p <= infinity, k > n/2, k' > 0 respectively). Suppose the phase function S is positively homogeneous in xi-variables, non-degenerate and satisfies certain conditions. Then the Fourier integral operator T is L-p-bounded. Applying the method of (1), we can obtain the L-p-boundedness of the Fourier integral operator if (2) the symbol a is an element of Lambda(1,delta,k,k'), 0 <= delta < 1, with m(0), k, k' and S given as in (1). Also, the method of (1) gives: (3) a is an element of Lambda(1,delta,k,k'),(0) 0 <= delta < 1 and k, k' given as in (1), then the L-p-boundedness of the pseudo-differential operators holds, 1 < p < infinity.
引用
收藏
页码:37 / 98
页数:62
相关论文
共 17 条
[1]   Lp Boundedness of Fourier Integral Operators in the Class S1,0 [J].
Ing-Lung Hwang .
Acta Mathematica Sinica, English Series, 2023, 39 :37-98
[2]   Lp Boundedness of Fourier Integral Operators in the Class S0,0 [J].
Hwang, Ing-Lung .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (09) :1551-1596
[3]   Lp Boundedness of Fourier Integral Operators in the Class S0,0 [J].
Ing-Lung Hwang .
Acta Mathematica Sinica, English Series, 2022, 38 :1551-1596
[4]   On the global LP boundedness of a general class of h-Fourier integral operators [J].
Aitemrar, Chafika Amel ;
Senoussaoui, Abderrahmane .
TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (04) :1726-1737
[5]   Global LP-Boundedness of Rough Fourier Integral Operators [J].
Sindayigaya, Joachim .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (05)
[6]   Lp boundedness of rough bi-parameter Fourier integral operators [J].
Hong, Qing ;
Lu, Guozhen ;
Zhang, Lu .
FORUM MATHEMATICUM, 2018, 30 (01) :87-107
[7]   ON THE L-p-BOUNDEDNESS OF A CLASS OF SEMICLASSICAL FOURIER INTEGRAL OPERATORS [J].
Elong, Ouissam ;
Senoussaoui, Abderrahmane .
MATEMATICKI VESNIK, 2018, 70 (03) :189-203
[8]   On the global Lp boundedness of multilinear h-Fourier integral operators with rough amplitudes [J].
Aitemrar, Chafika Amel ;
Senoussaoui, Abderrahmane .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (03) :907-916
[9]   On L2-boundedness of Fourier integral operators [J].
Yang, Jie ;
Chen, Wenyi ;
Zhou, Jiang .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[10]   Lp ESTIMATES FOR ROUGH SEMICLASSICAL FOURIER INTEGRAL OPERATORS [J].
Aitemrar, Chafika Amel .
MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) :533-543