Patient-specific quality assurance strategies for synthetic computed tomography in magnetic resonance-only radiotherapy of the abdomen

被引:11
作者
Dal Bello, Riccardo [1 ,2 ,5 ]
Lapaeva, Mariia [1 ,2 ,3 ,4 ]
La Greca Saint-Esteven, Agustina [1 ,2 ,4 ]
Wallimann, Philipp [1 ,2 ]
Gunther, Manuel [3 ]
Konukoglu, Ender [4 ]
Andratschke, Nicolaus [1 ,2 ]
Guckenberger, Matthias [1 ,2 ]
Tanadini-Lang, Stephanie [1 ,2 ]
机构
[1] Univ Hosp Zurich, Dept Radiat Oncol, Zurich, Switzerland
[2] Univ Zurich, Zurich, Switzerland
[3] Univ Zurich, Dept Informat, Artificial Intelligence & Machine Learning Grp, Zurich, Switzerland
[4] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
[5] Univ Spital Zurich USZ, Klin Radioonkol, Ramistr 100, CH-8091 Zurich, Switzerland
关键词
MR-guided radiotherapy; synthetic CT; Neural network; Quality assurance; PSQA; MR-Linac; CT; GENERATION; MRI;
D O I
10.1016/j.phro.2023.100464
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: The superior tissue contrast of magnetic resonance (MR) compared to computed tomography (CT) led to an increasing interest towards MR-only radiotherapy. For the latter, the dose calculation should be performed on a synthetic CT (sCT). Patient-specific quality assurance (PSQA) methods have not been established yet and this study aimed to assess several software-based solutions.Materials and methods: A retrospective study was performed on 20 patients treated at an MR-Linac, which were selected to evenly cover four subcategories: (i) standard, (ii) air pockets, (iii) lung and (iv) implant cases. The neural network (NN) CycleGAN was adopted to generate a reference sCT, which was then compared to four PSQA methods: (A) water override of body, (B) five tissue classes with bulk densities, (C) sCT generated by a separate NN (pix2pix) and (D) deformed CT.Results: The evaluation of the dose endpoints demonstrated that while all methods A-D provided statistically equivalent results (p = 0.05) within the 2% level for the standard cases (i), only the methods C-D guaranteed the same result over the whole cohort. The bulk densities override was shown to be a valuable method in absence of lung tissue within the beam path.Conclusion: The observations of this study suggested that the use of an additional sCT generated by a separate NN was an appropriate tool to perform PSQA of a sCT in an MR-only workflow at an MR-Linac. The time and dose endpoints requirements were respected, namely within 10 min and 2%.
引用
收藏
页数:7
相关论文
共 45 条
[1]  
Besserer J, 2007, SSRMP REC, V15
[2]  
Biggs S, 2022, PYMEDPHYS
[3]   A review of atlas-based segmentation for magnetic resonance brain images [J].
Cabezas, Mariano ;
Oliver, Arnau ;
Llado, Xavier ;
Freixenet, Jordi ;
Cuadra, Meritxell Bach .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :E158-E177
[4]   Emerging role of MRI in radiation therapy [J].
Chandarana, Hersh ;
Wang, Hesheng ;
Tijssen, R. H. N. ;
Das, Indra J. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (06) :1468-1478
[5]   Magnetic resonance-guided radiation therapy: A review [J].
Chin, Stephen ;
Eccles, Cynthia L. ;
McWilliam, Alan ;
Chuter, Robert ;
Walker, Emma ;
Whitehurst, Philip ;
Berresford, Joseph ;
Van Herk, Marcel ;
Hoskin, Peter J. ;
Choudhury, Ananya .
JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2020, 64 (01) :163-177
[6]   MR-guidance in clinical reality: current treatment challenges and future perspectives [J].
Corradini, S. ;
Alongi, F. ;
Andratschke, N. ;
Belka, C. ;
Boldrini, L. ;
Cellini, F. ;
Debus, J. ;
Guckenberger, M. ;
Hoerner-Rieber, J. ;
Lagerwaard, F. J. ;
Mazzola, R. ;
Palacios, M. A. ;
Philippens, M. E. P. ;
Raaijmakers, C. P. J. ;
Terhaard, C. H. J. ;
Valentini, V. ;
Niyazi, M. .
RADIATION ONCOLOGY, 2019, 14 (1)
[7]   A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases [J].
Cusumano, Davide ;
Lenkowicz, Jacopo ;
Votta, Claudio ;
Boldrini, Luca ;
Placidi, Lorenzo ;
Catucci, Francesco ;
Dinapoli, Nicola ;
Antonelli, Marco Valerio ;
Romano, Angela ;
De Luca, Viola ;
Chiloiro, Giuditta ;
Indovina, Luca ;
Valentini, Vincenzo .
RADIOTHERAPY AND ONCOLOGY, 2020, 153 :205-212
[8]   Deep learning-enabled MRI-only photon and proton therapy treatment planning for paediatric abdominal tumours [J].
Florkow, Mateusz C. ;
Guerreiro, Filipa ;
Zijlstra, Frank ;
Seravalli, Enrica ;
Janssens, Geert O. ;
Maduro, John H. ;
Knopf, Antje C. ;
Castelein, Rene M. ;
van Stralen, Marijn ;
Raaymakers, Bas W. ;
Seevinck, Peter R. .
RADIOTHERAPY AND ONCOLOGY, 2020, 153 :220-227
[9]   Synthetic 4D-CT of the thorax for treatment plan adaptation on MR-guided radiotherapy systems [J].
Freedman, Joshua N. ;
Bainbridge, Hannah E. ;
Nill, Simeon ;
Collins, David J. ;
Kachelriess, Marc ;
Leach, Martin O. ;
McDonald, Fiona ;
Oelfke, Uwe ;
Wetscherek, Andreas .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (11)
[10]   Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy [J].
Fu, Jie ;
Singhrao, Kamal ;
Cao, Minsong ;
Yu, Victoria ;
Santhanam, Anand P. ;
Yang, Yingli ;
Guo, Minghao ;
Raldow, Ann C. ;
Ruan, Dan ;
Lewis, John H. .
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2020, 6 (01)