Microstructure Evaluation of Fly Ash Geopolymers Alkali-Activated by Binary Composite Activators

被引:3
|
作者
Zhao, Jiangping [1 ]
Wang, Yachao [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Resources Engn, Xian 710055, Peoples R China
关键词
alkali-activated; microstructure; fly ash; binary activator; crosslinking; WASTE; BEHAVIOR;
D O I
10.3390/min13070910
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An efficient fabrication of fly-ash-based geopolymer is urgent and necessary to develop solid waste recycling techniques. Herein, an attempt to investigate the effect of binary composite activators on the microstructure of fly-ash-based geopolymers is conducted through the comparison of 24 experiments, which consisted of Na2SiO3 & BULL;9H(2)O, Na2CO3, K2CO3, NaOH, and KOH through a facile preparation technique. The results demonstrate that the activator of Na2SiO3 & BULL;9H(2)O + KOH presents the highest mechanical strength, due to the synergy activation between the inherent & EQUIV;Si-O-Si & EQUIV; silicon-chain precursor derived from the Na2SiO3 and K+'s catalysis. It reveals that the K+ plays a crucial role in the Na2SiO3-activated fly ash geopolymer, which is the rate-determining step of the enhanced crosslinking and propagation of N-(C)-A-S-H chains, leading to an increase in weight loss temperatures of specimens from TG/DTG results. Furthermore, the adding silica fume facilitates as-formed amorphous silicates, which also could fill into the pores of N-(C)-A-S-H amorphous gels and present a uniform and compact morphology, leading to an increase in the pore volume of the pore diameter less than 100 nm. It explores an efficient and cost-effective preparation of fly-ash-based geopolymer for developing solid waste recycling techniques.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers
    Fu, Chuanqing
    Ye, Hailong
    Zhu, Kaiqi
    Fang, Deming
    Zhou, Jianbo
    CEMENT & CONCRETE COMPOSITES, 2020, 114
  • [2] Mechanical and microstructural properties of alkali-activated fly ash geopolymers
    Komljenovic, M.
    Bascarevic, Z.
    Bradic, V.
    JOURNAL OF HAZARDOUS MATERIALS, 2010, 181 (1-3) : 35 - 42
  • [3] PROPERTIES OF ALKALI-ACTIVATED FLY ASH MORTARS MADE WITH MULTIPLE ACTIVATORS
    Ghafoori, Nader
    Sierra, Kimberly
    Najimi, Meysam
    Sharbaf, Mohammadreza
    II INTERNATIONAL CONFERENCE ON CONCRETE SUSTAINABILITY - ICCS16, 2016, : 1332 - 1342
  • [4] Microstructure development of alkali-activated fly ash cement:: a descriptive model
    Fernández-Jiménez, A
    Palomo, A
    Criado, M
    CEMENT AND CONCRETE RESEARCH, 2005, 35 (06) : 1204 - 1209
  • [5] Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives
    Hu Mingyu
    Zhu Xiaomin
    Long Fumei
    CEMENT & CONCRETE COMPOSITES, 2009, 31 (10) : 762 - 768
  • [6] Study of the Mechanical Properties and Microstructure of Alkali-Activated Fly Ash-Slag Composite Cementitious Materials
    Lv, Yigang
    Wang, Cui
    Han, Weiwei
    Li, Xing
    Peng, Hui
    POLYMERS, 2023, 15 (08)
  • [7] The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag
    Cosa, Juan
    Soriano, Lourdes
    Victoria Borrachero, Maria
    Reig, Lucia
    Paya, Jordi
    Maria Monzo, Jose
    MINERALS, 2018, 8 (08)
  • [8] Blended alkali-activated fly ash/brick powder materials
    Rovnanik, Pavel
    Reznik, Bohuslav
    Rovnanikova, Pavla
    ECOLOGY AND NEW BUILDING MATERIALS AND PRODUCTS 2016, 2016, 151 : 108 - 113
  • [9] Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature
    Pan, Z.
    Tao, Z.
    Cao, Y. F.
    Wuhrer, R.
    Murphy, T.
    CEMENT & CONCRETE COMPOSITES, 2018, 86 : 9 - 18
  • [10] Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder
    Rodriguez, Erich D.
    Bernal, Susan A.
    Provis, John L.
    Paya, Jordi
    Monzo, Jose M.
    Victoria Borrachero, Maria
    CEMENT & CONCRETE COMPOSITES, 2013, 35 (01) : 1 - 11