Weyl-ambient geometries

被引:11
|
作者
Jia, Weizhen [1 ]
Karydas, Manthos [1 ]
Leigh, Robert G.
机构
[1] Univ Illinois, Illinois Ctr Adv Studies Universe, 1110 West Green St, Urbana, IL 61801 USA
关键词
ANOMALIES; SPACE;
D O I
10.1016/j.nuclphysb.2023.116224
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Weyl geometry is a natural extension of conformal geometry with Weyl covariance mediated by a Weyl connection. We generalize the Fefferman-Graham (FG) ambient construction for conformal manifolds to a corresponding construction for Weyl manifolds. We first introduce the Weyl-ambient metric motivated by the Weyl-Fefferman-Graham (WFG) gauge. From a top-down perspective, we show that the Weyl-ambient space as a pseudo-Riemannian geometry induces a codimension-2 Weyl geometry. Then, from a bottomup perspective, we start from promoting a conformal manifold into a Weyl manifold by assigning a Weyl connection to the principal R+-bundle realizing a Weyl structure. We show that the Weyl structure admits a well-defined initial value problem, which determines the Weyl-ambient metric. Through the Weyl-ambient construction, we also investigate Weyl-covariant tensors on the Weyl manifold and define extended Weylobstruction tensors explicitly.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] FLUIDS IN WEYL GEOMETRIES
    Fatibene, L.
    Francaviglia, M.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (02)
  • [2] Weyl structures for parabolic geometries
    Cap, A
    Slovák, J
    MATHEMATICA SCANDINAVICA, 2003, 93 (01) : 53 - 90
  • [3] Curvature Properties of Weyl Geometries
    Peter Gilkey
    Stana Nikčević
    Udo Simon
    Results in Mathematics, 2011, 59 : 523 - 544
  • [4] Curvature Properties of Weyl Geometries
    Gilkey, Peter
    Nikcevic, Stana
    Simon, Udo
    RESULTS IN MATHEMATICS, 2011, 59 (3-4) : 523 - 544
  • [5] WEYL GEOMETRIES AND TIMELIKE GEODESICS
    Fatibene, L.
    Francaviglia, M.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (05)
  • [6] Local constraints on Einstein-Weyl geometries
    Eastwood, MG
    Tod, KP
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 491 : 183 - 198
  • [7] WIGNER-WEYL FORMALISMS FOR TOROIDAL GEOMETRIES
    KASPERKOVITZ, P
    PEEV, M
    ANNALS OF PHYSICS, 1994, 230 (01) : 21 - 51
  • [8] General class of wormhole geometries in conformal Weyl gravity
    Lobo, Francisco S. N.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (17)
  • [9] Wormhole geometries in fourth-order conformal Weyl gravity
    Varieschi, Gabriele U.
    Ault, Kellie L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (06):
  • [10] Weyl Geometries, Fisher Information and Quantum Entropy in Quantum Mechanics
    Davide Fiscaletti
    Ignazio Licata
    International Journal of Theoretical Physics, 2012, 51 : 3587 - 3595