Deep Reinforcement Learning-Based Optimal Parameter Design of Power Converters

被引:2
|
作者
Bui, Van-Hai [1 ,4 ]
Chang, Fangyuan [1 ]
Su, Wencong [1 ]
Wang, Mengqi [1 ]
Murphey, Yi Lu [1 ]
Da Silva, Felipe Leno [2 ]
Huang, Can [2 ]
Xue, Lingxiao [3 ]
Glatt, Ruben [2 ]
机构
[1] Univ Michigan Dearborn, Dept Elect & Comp Engn, Coll Engn & Comp Sci, Dearborn, MI 48128 USA
[2] Lawrence Livermore Natl Lab LLNL, Livermore, CA 94550 USA
[3] Oak Ridge Natl Lab ORNL, Oak Ridge, TN 37830 USA
[4] State Univ New York SUNY Maritime Coll, Dept Elect Engn, Throggs Neck, NY 10465 USA
来源
2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC | 2023年
关键词
deep reinforcement learning; deep neural networks; optimal parameters design; optimization; power converters; OPTIMIZATION; FREQUENCY; PFC;
D O I
10.1109/ICNC57223.2023.10074355
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The optimal design of power converters often requires a long time to process with a huge number of simulations to determine the optimal parameters. To reduce the design cycle, this paper proposes a proximal policy optimization (PPO)-based model to optimize the design parameters for Buck and Boost converters. In each training step, the learning agent carries out an action that adjusts the value of the design parameters and interacts with a dynamic Simulink model. The simulation provides feedback on power efficiency and helps the learning agent in optimizing parameter design. Unlike deep Q-learning and standard actor-critic algorithms, PPO includes a clipped objective function and the function avoids the new policy from changing too far from the old policy. This allows the proposed model to accelerate and stabilize the learning process. Finally, to show the effectiveness of the proposed method, the performance of different optimization algorithms is compared on two popular power converter topologies.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 50 条
  • [1] Deep Neural Network-Based Surrogate Model for Optimal Component Sizing of Power Converters Using Deep Reinforcement Learning
    Bui, Van-Hai
    Chang, Fangyuan
    Su, Wencong
    Wang, Mengqi
    Murphey, Yi Lu
    Da Silva, Felipe Leno
    Huang, Can
    Xue, Lingxiao
    Glatt, Ruben
    IEEE ACCESS, 2022, 10 : 78702 - 78712
  • [2] Parameter Design Optimization for DC-DC Power Converters with Deep Reinforcement Learning
    Tian, Fanghao
    Cobaleda, Diego Bernal
    Wouters, Hans
    Martinez, Wilmar
    2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,
  • [3] A Deep Reinforcement Learning-Based Optimal Transmission Control Method for Streaming Videos
    Yang, Yawen
    Xiao, Yuxuan
    IEEE ACCESS, 2024, 12 : 53088 - 53098
  • [4] Deep Learning-Based Model Predictive Control for Resonant Power Converters
    Lucia, Sergio
    Navarro, Denis
    Karg, Benjamin
    Sarnago, Hector
    Lucia, Oscar
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (01) : 409 - 420
  • [5] Deep Reinforcement Learning-Based Channel and Power Allocation in Multibeam LEO Satellite Systems
    Li, Junrong
    Peng, Fuzhou
    Wang, Xijun
    Chen, Xiang
    IOT AS A SERVICE, IOTAAS 2023, 2025, 585 : 103 - 116
  • [6] Reinforcement Learning-Based Sequential Batch-Sampling for Bayesian Optimal Experimental Design
    Ashenafi, Yonatan
    Pandita, Piyush
    Ghosh, Sayan
    JOURNAL OF MECHANICAL DESIGN, 2022, 144 (09)
  • [7] Optimal Design of Planar Microwave Microfluidic Sensors Based on Deep Reinforcement Learning
    Wang, Bin-Xiao
    Zhao, Wen-Sheng
    Wang, Da-Wei
    Wang, Junchao
    Li, Wenjun
    Liu, Jun
    IEEE SENSORS JOURNAL, 2021, 21 (24) : 27441 - 27449
  • [8] Deep Reinforcement Learning-Based Distributed 3D UAV Trajectory Design
    He, Huasen
    Yuan, Wenke
    Chen, Shuangwu
    Jiang, Xiaofeng
    Yang, Feng
    Yang, Jian
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (06) : 3736 - 3751
  • [9] Deep Reinforcement Learning-Based Intelligent Reflecting Surface for Cooperative Jamming Model Design
    Lu, Shaofang
    Shen, Xianhao
    Zhang, Panfeng
    Wu, Zhen
    Chen, Yi
    Wang, Li
    Xie, Xiaolan
    IEEE ACCESS, 2023, 11 : 98764 - 98775
  • [10] Deep Reinforcement Learning-Based Edge Caching in Wireless Networks
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2020, 6 (01) : 48 - 61