Deep Reinforcement Learning-Based Optimal Parameter Design of Power Converters

被引:2
作者
Bui, Van-Hai [1 ,4 ]
Chang, Fangyuan [1 ]
Su, Wencong [1 ]
Wang, Mengqi [1 ]
Murphey, Yi Lu [1 ]
Da Silva, Felipe Leno [2 ]
Huang, Can [2 ]
Xue, Lingxiao [3 ]
Glatt, Ruben [2 ]
机构
[1] Univ Michigan Dearborn, Dept Elect & Comp Engn, Coll Engn & Comp Sci, Dearborn, MI 48128 USA
[2] Lawrence Livermore Natl Lab LLNL, Livermore, CA 94550 USA
[3] Oak Ridge Natl Lab ORNL, Oak Ridge, TN 37830 USA
[4] State Univ New York SUNY Maritime Coll, Dept Elect Engn, Throggs Neck, NY 10465 USA
来源
2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC | 2023年
关键词
deep reinforcement learning; deep neural networks; optimal parameters design; optimization; power converters; OPTIMIZATION; FREQUENCY; PFC;
D O I
10.1109/ICNC57223.2023.10074355
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The optimal design of power converters often requires a long time to process with a huge number of simulations to determine the optimal parameters. To reduce the design cycle, this paper proposes a proximal policy optimization (PPO)-based model to optimize the design parameters for Buck and Boost converters. In each training step, the learning agent carries out an action that adjusts the value of the design parameters and interacts with a dynamic Simulink model. The simulation provides feedback on power efficiency and helps the learning agent in optimizing parameter design. Unlike deep Q-learning and standard actor-critic algorithms, PPO includes a clipped objective function and the function avoids the new policy from changing too far from the old policy. This allows the proposed model to accelerate and stabilize the learning process. Finally, to show the effectiveness of the proposed method, the performance of different optimization algorithms is compared on two popular power converter topologies.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 11 条
[1]  
Bui V.H., 2022, IEEE T SMART GRID
[2]  
Cui C., 2021, IEEE T CIRCUITS SY 2
[3]   Multiobjective Optimization of Medium-Frequency Transformers for Isolated Soft-Switching Converters Using a Genetic Algorithm [J].
Garcia-Bediaga, Asier ;
Villar, Irma ;
Rujas, Alejandro ;
Mir, Luis ;
Rufer, Alfred .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (04) :2995-3006
[4]   IoT-Based DC/DC Deep Learning Power Converter Control: Real-Time Implementation [J].
Gheisarnejad, Meysam ;
Khooban, Mohammad Hassan .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (12) :13621-13630
[5]  
Haarnoja T, 2019, Arxiv, DOI arXiv:1812.05905
[6]   The Implementation of Bee Colony Optimization Algorithm to Sheppard-Taylor PFC Converter [J].
Karaarslan, Ahmet .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (09) :3711-3719
[7]  
Li X., IEEE ACCESS, V9, P11884
[8]   Simulated Annealing Algorithm Coupled With a Deterministic Method for Parameter Extraction of Energetic Hysteresis Model [J].
Liu, Ren ;
Li, Lin .
IEEE TRANSACTIONS ON MAGNETICS, 2018, 54 (11)
[9]   Novel Soft-Switching Integrated Boost DC-DC Converter for PV Power System [J].
Sayed, Khairy ;
Gronfula, Mohammed G. ;
Ziedan, Hamdy A. .
ENERGIES, 2020, 13 (03)
[10]   Boost Converter Controller Design Using Queen-Bee-Assisted GA [J].
Sundareswaran, Kinattingal ;
Sreedevi, V. T. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (03) :778-783