Portable microfluidic impedance biosensor for SARS-CoV-2 detection

被引:15
作者
Laleh, Soroush [1 ,2 ]
Ibarlucea, Bergoi [3 ,4 ]
Stadtmueller, Marlena [5 ]
Cuniberti, Gianaurelio [3 ,4 ,6 ]
Medina-Sanchez, Mariana [1 ,2 ]
机构
[1] Leibniz IFW Dresden, Inst Emerging Elect Technol, Micro & Nanobiomed Engn Grp MNBE, Leibniz Inst Solid State & Mat Res, D-01069 Dresden, Germany
[2] Tech Univ Dresden, Chair Micro & NanoSyst, Ctr Mol Bioengn B CUBE, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Inst Mat Sci, Dresden, Germany
[4] Tech Univ Dresden, Max Bergmann Ctr Biomat, Dresden, Germany
[5] Univ Klinikum Carl Gustav Carus Dresden, Dresden, Germany
[6] Tech Univ Dresden, Dresden Ctr Computat Mat Sci DCMS, Dresden, Germany
基金
欧洲研究理事会;
关键词
COVID-19; diagnostics; SARS-CoV-2; biosensor; Point-of-care; Electrochemical detection; Electrochemical impedance spectroscopy; RAPID DETECTION; POINT; CORONAVIRUS; TESTS;
D O I
10.1016/j.bios.2023.115362
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Pandemics as the one we are currently facing, where fast-spreading viruses present a threat to humanity, call for simple and reliable methods to perform early diagnosis, enabling detection of very low pathogen loads even before symptoms start showing in the host. So far, standard polymerase chain reaction (PCR) is the most reliable method for doing so, but it is rather slow and needs specialized reagents and trained personnel to operate it. Additionally, it is expensive and not easily accessible. Therefore, developing miniaturized and portable sensors which perform early detection of pathogens with high reliability is necessary to not only prevent the spreading of the disease but also to monitor the effectiveness of the developed vaccines and the appearance of new pathogenic variants. Thus, in this work we develop a sensitive microfluidic impedance biosensor for the direct detection of SARS-CoV-2, towards a mobile point-of-care (POC) platform. The operational parameters are optimized with the aid of design-of-experiment (DoE), for an accurate detection of the viral antigens using electrochemical impedance spectroscopy (EIS). We perform the biodetection of buffer samples spiked with fM concentration levels and validate the biosensor in a clinical context of relevance by analyzing 15 real patient samples up to a Ct value (cycle threshold) of 27. Finally, we demonstrate the versatility of the developed platform using different settings, including a small portable potentiostat, using multiple channels for self-validation, as well as with single biosensors for a smartphone-based readout. This work contributes to the rapid and reliable diagnostics of COVID19 and can be extended to other infectious diseases, allowing the monitoring of viral load in vaccinated and unvaccinated people to anticipate a potential relapse of the disease.
引用
收藏
页数:11
相关论文
共 83 条
[11]   A LINEAR KRONIG-KRAMERS TRANSFORM TEST FOR IMMITTANCE DATA VALIDATION [J].
BOUKAMP, BA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) :1885-1894
[12]   ALTERNATIVES TO KRONIG-KRAMERS TRANSFORMATION AND TESTING, AND ESTIMATION OF DISTRIBUTIONS [J].
BOUKAMP, BA ;
MACDONALD, JR .
SOLID STATE IONICS, 1994, 74 (1-2) :85-101
[13]   SARS-CoV-2 detection enabled by a portable and label-free photoelectrochemical genosensor using graphitic carbon nitride and gold nanoparticles [J].
Catunda, Lucas Gomes da Silva ;
do Prado, Thiago Martimiano ;
de Oliveira, Tassia Regina ;
dos Santos, Daniel Junior Almeida ;
Gomes, Nathalia Oezau ;
Correa, Daniel Souza ;
Faria, Ronaldo Censi ;
Machado, Sergio Antonio Spinola .
ELECTROCHIMICA ACTA, 2023, 451
[14]   Urgent need of rapid tests for SARS CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2 [J].
Cerutti, Francesco ;
Burdino, Elisa ;
Milia, Maria Grazia ;
Allice, Tiziano ;
Gregori, Gabriella ;
Bruzzone, Bianca ;
Ghisetti, Valeria .
JOURNAL OF CLINICAL VIROLOGY, 2020, 132
[15]   Modelling upper respiratory viral load dynamics of SARS-CoV-2 [J].
Challenger, Joseph D. ;
Foo, Cher Y. ;
Wu, Yue ;
Yan, Ada W. C. ;
Marjaneh, Mahdi Moradi ;
Liew, Felicity ;
Thwaites, Ryan S. ;
Okell, Lucy C. ;
Cunnington, Aubrey J. .
BMC MEDICINE, 2022, 20 (01)
[16]   Electrochemical Impedance-Based Biosensors for the Label-Free Detection of the Nucleocapsid Protein from SARS-CoV-2 [J].
Cho, Hana ;
Shim, Suhyun ;
Cho, Won Woo ;
Cho, Sungbo ;
Baek, Hanseung ;
Lee, Sang-Myung ;
Shin, Dong-Sik .
ACS SENSORS, 2022, 7 (06) :1676-1684
[17]   Real-life performance of a COVID-19 rapid antigen detection test targeting the SARS-CoV-2 nucleoprotein for diagnosis of COVID-19 due to the Omicron variant [J].
de Michelena, Paula ;
Torres, Ignacio ;
Ramos-Garcia, Angela ;
Gozalbes, Victoria ;
Ruiz, Nidia ;
Sanmartin, Ana ;
Botija, Pilar ;
Poujois, Sandrine ;
Huntley, Dixie ;
Albert, Eliseo ;
Navarro, David .
JOURNAL OF INFECTION, 2022, 84 (05) :E64-E66
[18]   Molecular test for COVID-19 diagnosis based on a colorimetric genomagnetic assay [J].
de Oliveira, Tassia Regina ;
Leite, Taise Helena Oliveira ;
Miranda, Wyllian Neves ;
Manuli, Erika Regina ;
Leal, Fabio ;
Sabino, Ester ;
Pott-Junior, Henrique ;
Melendez, Matias ;
Faria, Ronaldo Censi .
ANALYTICA CHIMICA ACTA, 2023, 1257
[19]  
Dean A, 2017, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-3-319-52250-0
[20]   Rapid Detection of SARS-CoV-2 Antigens and Antibodies Using OFET Biosensors Based on a Soft and Stretchable Semiconducting Polymer [J].
Ditte, Kristina ;
Le, Trang Anh Nguyen ;
Ditzer, Oliver ;
Bojorquez, Diana Isabel Sandoval ;
Chae, Soosang ;
Bachmann, Michael ;
Baraban, Larysa ;
Lissel, Franziska .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (05) :2140-2147