Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases

被引:25
|
作者
Pilvenyte, Greta [1 ,2 ]
Ratautaite, Vilma [1 ,2 ]
Boguzaite, Raimonda [1 ,2 ]
Ramanavicius, Simonas [3 ]
Chen, Chien-Fu [4 ]
Viter, Roman [5 ,6 ]
Ramanavicius, Arunas [1 ,2 ]
机构
[1] State Res Inst Ctr Phys Sci & Technol FTMC, Dept Nanotechnol, Sauletekio Ave 3, LT-10257 Vilnius, Lithuania
[2] Vilnius Univ VU, Inst Chem, Fac Chem & Geosci, Dept Phys Chem, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
[3] State Res Inst Ctr Phys Sci & Technol FTMC, Dept Electrochem Mat Sci, Sauletekio Ave 3, LT-10257 Vilnius, Lithuania
[4] Natl Taiwan Univ, Inst Appl Mech, Taipei City 106, Taiwan
[5] Univ Latvia, Inst Atom Phys & Spect, 19 Raina Blvd, LV-1586 Riga, Latvia
[6] Sumy State Univ, Ctr Collect Use Sci Equipment, 31 Sanatornaya St, UA-40018 Sumy, Ukraine
来源
BIOSENSORS-BASEL | 2023年 / 13卷 / 06期
关键词
molecularly imprinted polymer (MIP); electrochemical sensor; infectious disease biomarker; MULTIWALLED CARBON NANOTUBES; QUARTZ-CRYSTAL MICROBALANCE; HUMAN SERUM-ALBUMIN; SENSITIVE DETERMINATION; SELECTIVE DETECTION; CONDUCTING POLYMER; NEONATAL SEPSIS; POLYPYRROLE; VIRUS; BIOSENSOR;
D O I
10.3390/bios13060620
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials' influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] The Importance and Use of Polydopamine in Molecularly Imprinted Polymer-Based Electrochemical Sensor Design
    Ozcelikay-Akyildiz, Goksu
    Kaya, S. Irem
    Samanci, Seyda Nur
    Ozkan, Sibel A.
    CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2025,
  • [22] Recent Advances of Nanomaterials-Based Molecularly Imprinted Electrochemical Sensors
    Dong, Xinning
    Zhang, Congcong
    Du, Xin
    Zhang, Zhenguo
    NANOMATERIALS, 2022, 12 (11)
  • [23] Molecularly imprinted polymer-based sensors for atrazine detection by electropolymerization of o-phenylenediamine
    Li, Xiao
    He, Yanfen
    Zhao, Fan
    Zhang, Weiying
    Ye, Zhuoliang
    RSC ADVANCES, 2015, 5 (70): : 56534 - 56540
  • [24] Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review
    Beluomini, Maisa Azevedo
    da Silva, Jose Luiz
    de Sa, Acelino Cardoso
    Buffon, Edervaldo
    Pereira, Thulio Cesar
    Stradiotto, Nelson Ramos
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 840 : 343 - 366
  • [25] Electrochemical platform for the detection of adenosine using a sandwich-structured molecularly imprinted polymer-based sensor
    Gliga, Laura-Elena
    Iacob, Bogdan-Cezar
    Chesches, Bianca
    Florea, Adrian
    Barbu-Tudoran, Lucian
    Bodoki, Ede
    Oprean, Radu
    ELECTROCHIMICA ACTA, 2020, 354
  • [26] Molecularly Imprinted Electrochemical Sensors
    Suryanarayanan, Vembu
    Wu, Cheng-Tar
    Ho, Kuo-Chuan
    ELECTROANALYSIS, 2010, 22 (16) : 1795 - 1811
  • [27] Facile construction of a molecularly imprinted polymer-based electrochemical sensor for the detection of milk amyloid A
    Zhang, Zhengrong
    Chen, Shisheng
    Ren, Jianluan
    Han, Fang
    Yu, Xiaofeng
    Tang, Fang
    Xue, Feng
    Chen, Wei
    Yang, Jielin
    Jiang, Yuan
    Jiang, Hongmei
    Lv, Bo
    Xu, Jianguo
    Dai, Jianjun
    MICROCHIMICA ACTA, 2020, 187 (12)
  • [28] Electrochemical sensors based on magnetic molecularly imprinted polymers: A review
    Yanez-Sedeno, Paloma
    Campuzano, Susana
    Pingarron, Jose M.
    ANALYTICA CHIMICA ACTA, 2017, 960 : 1 - 17
  • [29] Molecularly imprinted polypyrrole-based electrochemical melamine sensors
    Brazys, Ernestas
    Ratautaite, Vilma
    Brasiunas, Benediktas
    Ramanaviciene, Almira
    Rodriguez, Laura
    Pinto, Andrea
    Milea, Demetrio
    Prentice, Urte
    Ramanavicius, Arunas
    MICROCHEMICAL JOURNAL, 2024, 199
  • [30] Investigation of electrochemical behaviour and determination of Riociguat with bare GCE and molecularly imprinted polymer-based electrochemical sensor
    Hosseinzadeh, Batoul
    Jadon, Nimisha
    Ozcelikay-Akyildiz, Goksu
    Kaya, S. Irem
    Cetinkaya, Ahmet
    Atici, Esen Bellur
    Ozkan, Sibel A.
    ELECTROCHIMICA ACTA, 2024, 503