Infrared and visible image fusion based on a two-stage class conditioned auto-encoder network

被引:7
|
作者
Cao, Yanpeng [1 ,2 ]
Luo, Xing [1 ,2 ]
Tong, Xi [1 ,2 ]
Yang, Jiangxin [1 ,2 ]
Cao, Yanlong [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Mech Engn, State Key Lab Fluid Power Transmiss & Control, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Mech Engn, Key Lab Adv Mfg Technol Zhejiang Prov, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Infrared imaging; Image fusion; Conditional learning; Auto; -encoder; PERFORMANCE; ALGORITHM; NEST;
D O I
10.1016/j.neucom.2023.126248
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing auto-encoder based infrared and visible image fusion methods typically utilize a shared encoder to extract features from different modalities and adopt a handcrafted fusion strategy to fuse the extracted features into intermediate representation before the decoder part. In this paper, we present a novel two -stage class conditioned auto-encoder framework for high-quality multispectral fusion tasks. In the first training stage, we introduce a class embedding sub-branch to the encoder network for modeling the characteristics of different modalities and adaptively scaling the intermediate features based on the input modality. Moreover, we design a cross-transfer residual block to promote the content and texture infor-mation flow in the encoder for generating more representative features. In the second training stage, we insert a learnable fusion module between the pre-trained class conditioned encoder and decoder parts to replace the handcrafted fusion strategy. Specific intensity and gradient loss functions are utilized to tune the model for the fusion of distinctive deep features in a data-driven manner. With the important designs including the class conditioned auto-encoder and the two-stage training strategy, our proposed TS-ClassFuse can better preserve distinctive information/features from the source images and decrease the training difficulty for simultaneously extracting informative features and determining the optimal fusion scheme. Experimental results verify the effectiveness of our method in terms of both qualitative and quantitative evaluations.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A model-based infrared and visible image fusion network with cooperative optimization
    Hu, Tianqing
    Nan, Xiaofei
    Zhou, Qinglei
    Lin, Renhao
    Shen, Yu
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 263
  • [42] A Generative Adversarial Network for Infrared and Visible Image Fusion Based on Semantic Segmentation
    Hou, Jilei
    Zhang, Dazhi
    Wu, Wei
    Ma, Jiayi
    Zhou, Huabing
    ENTROPY, 2021, 23 (03)
  • [43] Infrared and Visible Image Fusion Based on Mask and Cross-Dynamic Fusion
    Fu, Qiang
    Fu, Hanxiang
    Wu, Yuezhou
    ELECTRONICS, 2023, 12 (20)
  • [44] UNFusion: A Unified Multi-Scale Densely Connected Network for Infrared and Visible Image Fusion
    Wang, Zhishe
    Wang, Junyao
    Wu, Yuanyuan
    Xu, Jiawei
    Zhang, Xiaoqin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3360 - 3374
  • [45] SEDRFuse: A Symmetric Encoder-Decoder With Residual Block Network for Infrared and Visible Image Fusion
    Jian, Lihua
    Yang, Xiaomin
    Liu, Zheng
    Jeon, Gwanggil
    Gao, Mingliang
    Chisholm, David
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [46] Infrared and visible image fusion using two-layer generative adversarial network
    Chen, Lei
    Han, Jun
    Tian, Feng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (06) : 11897 - 11913
  • [47] Infrared and Visible Image Fusion with a Generative Adversarial Network and a Residual Network
    Xu, Dongdong
    Wang, Yongcheng
    Xu, Shuyan
    Zhu, Kaiguang
    Zhang, Ning
    Zhang, Xin
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [48] CLF-Net: Contrastive Learning for Infrared and Visible Image Fusion Network
    Zhu, Zhengjie
    Yang, Xiaogang
    Lu, Ruitao
    Shen, Tong
    Xie, Xueli
    Zhang, Tao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [49] FusionGAN: A generative adversarial network for infrared and visible image fusion
    Ma, Jiayi
    Yu, Wei
    Liang, Pengwei
    Li, Chang
    Jiang, Junjun
    INFORMATION FUSION, 2019, 48 : 11 - 26
  • [50] IDFusion: An Infrared and Visible Image Fusion Network for Illuminating Darkness
    Lv, Guohua
    Wang, Xiyan
    Wei, Zhonghe
    Cheng, Jinyong
    Ma, Guangxiao
    Bao, Hanju
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 3140 - 3145