Optimal Cislunar Architecture Design Using Monte Carlo Tree Search Methods

被引:4
作者
Klonowski, Michael [1 ]
Holzinger, Marcus J. [1 ]
Fahrner, Naomi Owens [2 ]
机构
[1] Univ Colorado, Smead Aerosp Engn Sci, 3775 Discovery Dr, Boulder, CO 80303 USA
[2] Ball Aerosp, 10 Longs Peak Dr, Broomfield, CO 80021 USA
关键词
Monte Carlo Tree Search; Space domain awareness; Reinforcement learning; Cislunar architecture; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1007/s40295-023-00383-x
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A novel multi-objective Monte Carlo Tree Search (MO-MCTS) algorithm is developed and implemented for use in architecture design problems. This algorithm is used with two well-known problems with known solutions in order to verify its performance. It is then used in a highly nonlinear Cislunar architecture design problem with no known analytical solutions. The results of this implementation display the ability of MO-MCTS to effectively navigate the state space of mixed integer nonlinear programming problems and emphasize the versatility of MO-MCTS for designing critical Cislunar architecture.
引用
收藏
页数:30
相关论文
共 32 条
[1]  
Annex A., 2020, JOSS, V5, P2050, DOI DOI 10.21105/JOSS.02050
[2]   Wind farm layout optimization using adaptive evolutionary algorithm with Monte Carlo Tree Search reinforcement learning [J].
Bai, Fangyun ;
Ju, Xinglong ;
Wang, Shouyi ;
Zhou, Wenyong ;
Liu, Feng .
ENERGY CONVERSION AND MANAGEMENT, 2022, 252
[3]   Mixed-integer nonlinear optimization [J].
Belotti, Pietro ;
Kirches, Christian ;
Leyffer, Sven ;
Linderoth, Jeff ;
Luedtke, James ;
Mahajan, Ashutosh .
ACTA NUMERICA, 2013, 22 :1-131
[4]   Pymoo: Multi-Objective Optimization in Python']Python [J].
Blank, Julian ;
Deb, Kalyanmoy .
IEEE ACCESS, 2020, 8 :89497-89509
[5]   A Survey of Monte Carlo Tree Search Methods [J].
Browne, Cameron B. ;
Powley, Edward ;
Whitehouse, Daniel ;
Lucas, Simon M. ;
Cowling, Peter I. ;
Rohlfshagen, Philipp ;
Tavener, Stephen ;
Perez, Diego ;
Samothrakis, Spyridon ;
Colton, Simon .
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2012, 4 (01) :1-43
[6]  
Chaslot G., 2008, AIIDE, V4, P216, DOI DOI 10.1609/AIIDE.V4I1.18700
[7]   Multi-objective design of optical systems for space situational awareness [J].
Coder, Ryan D. ;
Holzinger, Marcus J. .
ACTA ASTRONAUTICA, 2016, 128 :669-684
[8]  
Couetoux Adrien, 2011, Learning and Intelligent Optimization. 5th International Conference, LION 5. Selected Papers, P433, DOI 10.1007/978-3-642-25566-3_32
[9]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[10]  
Duffy L., 2022, 2022 IEEE INT SYST C, P1