Effect of sintering temperature on binder jetting additively manufactured stainless steel 316L: densification, microstructure evolution and mechanical properties

被引:34
|
作者
Mao, Yiwei [1 ]
Cai, Chao [1 ]
Zhang, Jinkai [1 ]
Heng, Yuhua [1 ]
Feng, Kunhao [1 ]
Cai, Daosheng [1 ,2 ]
Wei, Qingsong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[2] Wuhan Easy Co Ltd, Wuhan 430074, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2023年 / 22卷
关键词
Binder jetting; 316L; Sintering temperature; Pores formation; Microstructure evolution; Strength; INJECTION-MOLDING MIM; GRAIN-GROWTH; SIMULATION; BEHAVIOR; DENSITY; PARTS;
D O I
10.1016/j.jmrt.2022.12.096
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Binder jetting (BJ) selectivity jets binders on powders to form green parts efficiently. The following sintering process is indispensable to consolidating as-printed loose parts, inev-itably introducing shrinkage and grain growth. The pore morphology and grain size will change significantly in the sintering process, directly affecting the sintered parts' density and mechanical properties. However, there is no research on the microstructure evolution of BJ 316L in the sintering process to date, which is essential for the further application of BJ 316L. This study used a solid state sintering process to consolidate the BJ 316L green parts. The effect of vacuum sintering temperature (1300 degrees C-1400 degrees C) on the density, porosity, linear shrinkage, microstructure evolution, and tensile properties of the as-sintered parts was investigated. Results indicated that the sintering temperature significantly affects the properties of the sintered 316L parts. Notably, the grain size and tensile strength strongly correlate with porosity. The sintered 316L parts have a relative density of 92.0% and preferable mechanical properties (ultimate tensile strength of up to 473.7 MPa and elon-gation of up to 40.22%) after sintering at 1380 degrees C. The pores in the sintered BJ 316L were distinguished into three types according to pores' size and distribution characteristics. The potential influences of these three types of pores on the properties of the sintered BJ 316L were discussed. This work is engaged in providing a detailed reference for the densification and microstructure evolution of BJ 316L parts.(c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2720 / 2735
页数:16
相关论文
共 50 条
  • [21] Anisotropic spall failure of additively manufactured 316L stainless steel
    Lamb, K.
    Koube, K.
    Kacher, J.
    Sloop, T.
    Thadhani, N.
    Babu, S. S.
    ADDITIVE MANUFACTURING, 2023, 66
  • [22] Sintering anisotropy of binder jetted 316L stainless steel: part II - microstructure evolution during sintering
    Rios, Alberto Cabo
    Hryha, Eduard
    Olevsky, Eugene
    Harlin, Peter
    POWDER METALLURGY, 2022, 65 (04) : 283 - 295
  • [23] Anisotropic sintering behavior of stainless steel 316L printed by binder jetting additive manufacturing
    Esmati, Khadijeh
    Chakraborty, Apratim
    Pendurti, Srinivas
    Natarajan, Arunkumar
    Martin, Etienne
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [24] Fatigue Behavior of Additively Manufactured Stainless Steel 316L
    Avanzini, Andrea
    MATERIALS, 2023, 16 (01)
  • [25] Effect of sintering temperature on mechanical properties of injection moulded 316L stainless steel using natural waste rubber binder
    Rabilah, Rosniza
    Budin, Salina
    Yusoff, Hamid
    Hashim, Siti Mardini
    Halidi, Siti Nur Amalina Mohd
    PROCEEDINGS OF MECHANICAL ENGINEERING RESEARCH DAY 2018 (MERD), 2018, : 233 - 234
  • [26] Mechanical properties and microstructural characteristics of 316L stainless steel fabricated by laser powder bed fusion and binder jetting
    Xu, Mengchen
    Guo, Haowei
    Wang, Yufeng
    Hou, Yongzhao
    Dong, Zhichao
    Zhang, Lijuan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 4427 - 4439
  • [27] Multiscale characterisation study on the effect of heat treatment on the microstructure of additively manufactured 316L stainless steel
    Jenkins, Benjamin M.
    Etienne, Auriane
    Baustert, Eric
    Rose, Gregory
    Pareige, Cristelle
    Pareige, Philippe
    Radiguet, Bertrand
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [28] Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study
    Charmi, A.
    Falkenberg, R.
    Avila, L.
    Mohr, G.
    Sommer, K.
    Ulbricht, A.
    Sprengel, M.
    Neumann, R. Saliwan
    Skrotzki, B.
    Evans, A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 799
  • [29] Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel
    Roach, Ashley M.
    White, Benjamin C.
    Garland, Anthony
    Jared, Bradley H.
    Carroll, Jay D.
    Boyce, Brad L.
    ADDITIVE MANUFACTURING, 2020, 32
  • [30] Enhanced sintering, microstructure evolution and mechanical properties of 316L stainless steel with MoSi2 addition
    Akhtar, Farid
    Ali, Liaqat
    Feng Peizhong
    Shah, Jawad Ali
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (35) : 8794 - 8797