Microtexture Region Segmentation Using Matching Component Analysis Applied to Eddy Current Testing Data

被引:3
作者
Homa, Laura [1 ]
Lorenzo, Nick [1 ]
Cherry, Matthew [2 ]
Wertz, John [2 ]
机构
[1] Univ Dayton Res Inst, Struct Mat Div, 300 Coll Pk, Dayton, OH 45469 USA
[2] Air Force Res Lab, Mat & Mfg Directorate, 2977 Hobson Way, Wright Patterson AFB, OH 45431 USA
关键词
Eddy current testing; Microtexture regions; Material characterization; Level set inversion; Inversion methods;
D O I
10.1007/s10921-023-00951-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Microtexture regions (MTR) are collections of grains with similar crystallographic orientation; their presence in aerospace components can significantly impact component life. Thus, a method to detect and characterize MTR is needed. A potential solution is to use eddy current testing, which is sensitive to local changes in crystallographic orientation, to determine the size and dominant orientation of MTR. In this work, we introduce a technique that combines a variant of the matching component analysis algorithm with level set inversion in order to characterize MTR using eddy current testing data. The method is applied to simulated eddy current testing data of a real titainum specimen. Using this technique, we are able to successfully determine the boundaries and average orientation of MTR in the specimen.
引用
收藏
页数:15
相关论文
共 50 条
[41]   Analysis of Eddy Current Testing Method for Detection of Surface Hardening and Coating on Carbon Steel [J].
Kim, Jong Min ;
Kwon, Chan Wool ;
Song, Sung-Jin ;
Kim, Hak-Joon .
AETA 2016: RECENT ADVANCES IN ELECTRICAL ENGINEERING AND RELATED SCIENCES: THEORY AND APPLICATION, 2017, 415 :451-458
[42]   Multi-Scale Time Series Segmentation Network Based on Eddy Current Testing for Detecting Surface Metal Defects [J].
Li, Xiaorui ;
Ban, Xiaojuan ;
Qiao, Haoran ;
Yuan, Zhaolin ;
Dai, Hong-Ning ;
Yao, Chao ;
Guo, Yu ;
Obaidat, Mohammad S. ;
Huang, George Q. .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2025, 12 (03) :528-538
[43]   Three-dimensional defect localization from time-of-flight/eddy current testing data [J].
Tamburrino, A ;
Fresa, R ;
Udpa, SS ;
Tian, Y .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) :1148-1151
[44]   Eddy Current Testing Using Square-wave Inverter for Thickness Inspection of Steel Plate [J].
Sasayama, Teruyoshi ;
Enpuku, Keiji .
SENSORS AND MATERIALS, 2019, 31 (10) :3023-3032
[45]   Application of back-propagation neural networks to defect characterization using eddy current testing [J].
Zhou, Xinwu ;
Urayama, Ryoichi ;
Uchimoto, Tetsuya ;
Takagi, Toshiyuki .
INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2020, 64 (1-4) :817-825
[46]   Conductivity Measurement of Non-magnetic Material Using the Phase Feature of Eddy Current Testing [J].
Pu Huang ;
Zhiying Li ;
Hang Pu ;
Jieshu Jia ;
Kuanyao Liu ;
Lijun Xu ;
Yuedong Xie .
Journal of Nondestructive Evaluation, 2023, 42
[47]   Eddy Current Testing of Metal Cracks Using Spin Hall Magnetoresistance Sensor and Machine Learning [J].
Xu, Yanjun ;
Yang, Yumeng ;
Wu, Yihong .
IEEE SENSORS JOURNAL, 2020, 20 (18) :10502-10510
[48]   Numerical evaluation of the depth of branched-off cracks using eddy current testing signals [J].
Cheng, Weiying ;
Kanemoto, Shigeru ;
Komura, Ichiro .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) :1030-1033
[49]   Bearing Ball Property Estimation using Multi-frequency Eddy-current Testing [J].
Xia, Zihan ;
Hu, Gang ;
Huang, Ruochen ;
Liu, Xiaofei ;
Peyton, Anthony ;
Yin, Wuliang ;
Yang, Wuqiang .
2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
[50]   Defect detection and identification in eddy current testing using subtractive clustering algorithm combined with RBFNN [J].
Liu Banteng ;
Hou Dibo ;
Liu Baoling ;
Zhao Ling ;
Huang Pingjie ;
Zhang Guangxin .
INSIGHT, 2014, 56 (07) :375-380