New directions in electric arc furnace modeling

被引:2
作者
Grabowski, Dariusz [1 ]
Klimas, Maciej [1 ]
机构
[1] Silesian Tech Univ, Fac Elect Engn, Akademicka 10 str, PL-44100 Gliwice, Poland
关键词
artificial neural networks; chaos theory; electric arc furnace; fractional calculus; power balance; stochastic processes;
D O I
10.24425/aee.2023.143695
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents new directions in the modeling of electric arc furnaces. This work is devoted to an overview of new approaches based on random differential equations, artificial neural networks, chaos theory, and fractional calculus. The foundation of proposed solutions consists of an instantaneous power balance equation related to the electric arc phenomenon. The emphasis is mostly placed on the conclusions that come from a novel interpretation of the equation coefficients.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 29 条
  • [1] A HARMONIC DOMAIN COMPUTATIONAL PACKAGE FOR NONLINEAR PROBLEMS AND ITS APPLICATION TO ELECTRIC-ARCS
    ACHA, E
    SEMLYEN, A
    RAJAKOVIC, N
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 1990, 5 (03) : 1390 - 1397
  • [2] Parameter Identification of Arc Furnace Based on Stochastic Nature of Arc Length Using Two-Step Optimization Technique
    Agah, S. M. Mousavi
    Hosseinian, S. H.
    Abyaneh, H. Askarian
    Moaddabi, N.
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2010, 25 (04) : 2859 - 2867
  • [3] [Anonymous], 2019, MATLAB VERS 7 10 0
  • [4] Modeling devices with nonlinear voltage-current characteristics for harmonic studies
    Chang, G
    Hatziadoniu, C
    Xu, W
    Ribeiro, P
    Burch, R
    Grady, WA
    Halpin, M
    Liu, Y
    Ranade, S
    Ruthman, D
    Watson, N
    Ortmeyer, T
    Wikston, J
    Medina, A
    Testa, A
    Gardiner, R
    Dinavahi, V
    Acram, F
    Lehn, P
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2004, 19 (04) : 1802 - 1811
  • [5] Dietz M., 2022, IEEE T POWER DELIVER, DOI DOI 10.1109/TPWRD.2022.3163815
  • [6] A wavelet feature-based neural network approach to estimate electrical arc characteristics
    Farzanehdehkordi, Mahshid
    Ghaffaripour, Shadan
    Tirdad, Kayvan
    Dela Cruz, Alex
    Sadeghian, Alireza
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2022, 208
  • [7] Ghiormez L., 2018, IOP Conference Series: Materials Science and Engineering, V294, DOI 10.1088/1757-899X/294/1/012026
  • [8] Attention-Based Deep Recurrent Neural Network to Forecast the Temperature Behavior of an Electric Arc Furnace Side-Wall
    Godoy-Rojas, Diego F.
    Leon-Medina, Jersson X.
    Rueda, Bernardo
    Vargas, Whilmar
    Romero, Juan
    Pedraza, Cesar
    Pozo, Francesc
    Tibaduiza, Diego A.
    [J]. SENSORS, 2022, 22 (04)
  • [9] Polynomial-dynamic electric arc furnace model combined with ANN
    Golestani, Samaneh
    Samet, Haidar
    [J]. INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2018, 28 (07):
  • [10] Grabowski D., 2015, Selected applications of stochastic approach in circuit theory