Inter-Satellite Cooperative Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks

被引:4
|
作者
Tong, Minglei [1 ,2 ]
Li, Song [3 ]
Wang, Xiaoxiang [1 ,2 ]
Wei, Peng [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Key Lab Universal Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
[3] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
关键词
mobile edge computing; satellite-terrestrial networks; inter-satellite cooperation; offloading decision; resource allocation; INTERNET;
D O I
10.3390/s23020668
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Mobile edge computing (MEC)-enabled satellite-terrestrial networks (STNs) can provide task computing services for Internet of Things (IoT) devices. However, since some applications' tasks require huge amounts of computing resources, sometimes the computing resources of a local satellite's MEC server are insufficient, but the computing resources of neighboring satellites' MEC servers are redundant. Therefore, we investigated inter-satellite cooperation in MEC-enabled STNs. First, we designed a system model of the MEC-enabled STN architecture, where the local satellite and the neighboring satellites assist IoT devices in computing tasks through inter-satellite cooperation. The local satellite migrates some tasks to the neighboring satellites to utilize their idle resources. Next, the task completion delay minimization problem for all IoT devices is formulated and decomposed. Then, we propose an inter-satellite cooperative joint offloading decision and resource allocation optimization scheme, which consists of a task offloading decision algorithm based on the Grey Wolf Optimizer (GWO) algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method. The optimal solution is obtained by continuous iterations. Finally, simulation results demonstrate that the proposed scheme achieves relatively better performance than other baseline schemes.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Cooperative Computation Offloading and Resource Allocation for Mobile Edge Computing
    Li, Qiuping
    Zhao, Junhui
    Gong, Yi
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2019,
  • [32] Resource allocation for integrated satellite-terrestrial networks based on RSMA
    Shi, Jianfeng
    Yang, Husheng
    Chen, Xiao
    Yang, Zhaohui
    IET COMMUNICATIONS, 2024,
  • [33] Energy-Efficient Cooperative Offloading for Edge Computing-Enabled Vehicular Networks
    Cho, Hewon
    Cui, Ying
    Lee, Jemin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 10709 - 10723
  • [34] Joint Service Caching and Computing Resource Allocation for Edge Computing-Enabled Networks
    Kim, Mingun
    Cho, Hewon
    Cui, Ying
    Lee, Jemin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9029 - 9044
  • [35] Inter-Satellite Resource Balancing Based on Genetic Algorithm in Terrestrial-Satellite Networks
    Han, Chang
    Song, Yaohui
    Li, Xi
    Ji, Hong
    Zhang, Heli
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 689 - 694
  • [36] Joint Optimization of Computation Offloading and Resource Allocation for LEO Satellite Edge Computing Networks
    Dong, Feihu
    Zhang, Yasheng
    Tang, Qingqing
    Wei, Kaixiang
    2024 5TH INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE, ICTC 2024, 2024, : 199 - 203
  • [37] Cooperative task offloading and resource allocation for UAV-enabled mobile edge computing systems
    Xu, Dahu
    Xu, Ding
    COMPUTER NETWORKS, 2023, 223
  • [38] Joint Resource Allocation and Offloading Decision in Mobile Edge Computing
    Khalili, Ata
    Zarandi, Sheyda
    Rasti, Mehdi
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (04) : 684 - 687
  • [39] QoS-Aware Multihop Task Offloading in Satellite-Terrestrial Edge Networks
    Zhao, Liang
    Liu, Yuhang
    Hawbani, Ammar
    Lin, Na
    Zhao, Wei
    Yu, Keping
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (19): : 31453 - 31466
  • [40] Performance Analysis of Task Offloading in Double-Edge Satellite-Terrestrial Networks
    Wang, Peng
    Zhang, Xing
    Zhang, Jiaxin
    Wang, Zhi
    COMMUNICATIONS AND NETWORKING, CHINACOM 2018, 2019, 262 : 531 - 540