Inter-Satellite Cooperative Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks

被引:4
|
作者
Tong, Minglei [1 ,2 ]
Li, Song [3 ]
Wang, Xiaoxiang [1 ,2 ]
Wei, Peng [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Key Lab Universal Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
[3] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
关键词
mobile edge computing; satellite-terrestrial networks; inter-satellite cooperation; offloading decision; resource allocation; INTERNET;
D O I
10.3390/s23020668
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Mobile edge computing (MEC)-enabled satellite-terrestrial networks (STNs) can provide task computing services for Internet of Things (IoT) devices. However, since some applications' tasks require huge amounts of computing resources, sometimes the computing resources of a local satellite's MEC server are insufficient, but the computing resources of neighboring satellites' MEC servers are redundant. Therefore, we investigated inter-satellite cooperation in MEC-enabled STNs. First, we designed a system model of the MEC-enabled STN architecture, where the local satellite and the neighboring satellites assist IoT devices in computing tasks through inter-satellite cooperation. The local satellite migrates some tasks to the neighboring satellites to utilize their idle resources. Next, the task completion delay minimization problem for all IoT devices is formulated and decomposed. Then, we propose an inter-satellite cooperative joint offloading decision and resource allocation optimization scheme, which consists of a task offloading decision algorithm based on the Grey Wolf Optimizer (GWO) algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method. The optimal solution is obtained by continuous iterations. Finally, simulation results demonstrate that the proposed scheme achieves relatively better performance than other baseline schemes.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Joint Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Network
    Tong, Minglei
    Wang, Xiaoxiang
    Li, Song
    Peng, Liang
    SYMMETRY-BASEL, 2022, 14 (03):
  • [2] Online Learning-Based Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks
    Tong Minglei
    Li Song
    Han Wanjiang
    Wang Xiaoxiang
    China Communications, 2024, 21 (03) : 230 - 246
  • [3] Online Learning-Based Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks
    Tong, Minglei
    Li, Song
    Han, Wanjiang
    Wang, Xiaoxiang
    CHINA COMMUNICATIONS, 2024, 21 (03) : 230 - 246
  • [4] D2D-Assisted Task Offloading in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks
    Tong M.
    Li S.
    Wang X.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (01): : 25 - 30
  • [5] Inter-Satellite Links-Enabled Cooperative Satellite Edge Computing
    Li, Caiguo
    Shang, Bodong
    2024 INTERNATIONAL CONFERENCE ON UBIQUITOUS COMMUNICATION, UCOM 2024, 2024, : 308 - 313
  • [6] Task Offloading and Resource Allocation for Satellite-Terrestrial Integrated Networks
    Lyu, Ting
    Xu, Yueqiang
    Liu, Feifei
    Xu, Haitao
    Han, Zhu
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01): : 262 - 275
  • [7] Joint offloading decision and resource allocation for mobile edge computing enabled networks
    Liao, Yangzhe
    Shou, Liqing
    Yu, Quan
    Ai, Qingsong
    Liu, Quan
    COMPUTER COMMUNICATIONS, 2020, 154 (154) : 361 - 369
  • [8] Cooperative Caching and Resource Allocation in Integrated Satellite-Terrestrial Networks
    Gao, Xiangqiang
    Shao, Yingzhao
    Wang, Yuanle
    Zhang, Hangyu
    Liu, Yang
    ELECTRONICS, 2024, 13 (07)
  • [9] Joint Task Offloading and Resource Allocation in Mobile Edge Computing-Enabled Medical Vehicular Networks
    Zhang, Chuangchuang
    Liu, Siquan
    Yang, Hongyong
    Cui, Guanghai
    Li, Fuliang
    Wang, Xingwei
    MATHEMATICS, 2025, 13 (01)
  • [10] A study for inter-satellite cooperative computation offloading in LEO satellite networks
    Gang, Yuanshuo
    Zhang, Yuexia
    Wu, Peng
    Zheng, Hui
    Fan, Guangteng
    CHINA COMMUNICATIONS, 2025, 22 (02) : 12 - 25