Coupled double phase obstacle systems involving nonlocal functions and multivalued convection terms

被引:4
|
作者
Liu, Yongjian [1 ]
Nguyen, Van Thien [2 ]
Winkert, Patrick [3 ]
Zeng, Shengda [4 ,5 ,6 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimizat, Yulin 537000, Guangxi, Peoples R China
[2] FPT Univ, Dept Math, Hoa Lac High Tech Pk,Km29 Thang Long Highway, Hanoi, Vietnam
[3] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[4] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[5] Jagiellonian Univ Krakow, Fac Math & Comp Sci, ul Lojasiewicza 6, PL-30348 Krakow, Poland
[6] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimizat, Yulin 537000, Guangxi, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 202卷 / 02期
基金
欧盟地平线“2020”;
关键词
Coupled systems; Double phase operator; Existence and compactness results; Multivalued convection term; Nonlocal terms; Obstacle effect; ELLIPTIC-SYSTEMS; EXISTENCE;
D O I
10.1007/s00605-023-01825-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a new kind of coupled elliptic obstacle problems driven by double phase operators and with multivalued right-hand sides depending on the gradients of the solutions. Based on an abstract existence theorem for generalized mixed variational inequalities involving multivalued mappings due to Kenmochi (Hiroshima Math J 4:229-263, 1974), we prove the nonemptiness and compactness of the weak solution set of the coupled elliptic obstacle system.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 26 条
  • [1] Coupled double phase obstacle systems involving nonlocal functions and multivalued convection terms
    Yongjian Liu
    Van Thien Nguyen
    Patrick Winkert
    Shengda Zeng
    Monatshefte für Mathematik, 2023, 202 : 363 - 376
  • [2] An inverse problem for a double phase implicit obstacle problem with multivalued terms
    Zeng, Shengda
    Bai, Yunru
    Radulescu, Vicentiu D.
    Winkert, Patrick
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [3] Convergence analysis for double phase obstacle problems with multivalued convection term
    Zeng, Shengda
    Bai, Yunru
    Gasinski, Leszek
    Winkert, Patrick
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 659 - 672
  • [4] DOUBLE PHASE OBSTACLE PROBLEMS WITH MULTIVALUED CONVECTION AND MIXED BOUNDARY VALUE CONDITIONS
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 999 - 1023
  • [5] NONLOCAL DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH MULTIVALUED BOUNDARY CONDITIONS
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 877 - 912
  • [6] Double phase implicit obstacle problems with convection term and multivalued operator
    Zeng, Shengda
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    ANALYSIS AND APPLICATIONS, 2023, 21 (04) : 1013 - 1038
  • [7] Existence of solutions for double phase obstacle problems with multivalued convection term
    Zeng, Shengda
    Gasinski, Leszek
    Winkert, Patrick
    Bai, Yunru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [8] DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH CONVECTION AND MULTIVALUED MIXED BOUNDARY VALUE CONDITIONS
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) : 1898 - 1926
  • [9] Anisotropic and isotropic implicit obstacle problems with nonlocal terms and multivalued boundary conditions
    Zeng, Shengda
    Gasinski, Leszek
    Radulescu, Vicentiu D.
    Winkert, Patrick
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
  • [10] Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions
    Liu, Zhenhai
    Zeng, Shengda
    Gasinski, Leszek
    Kim, Yun-Ho
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (09)