Profitability related industrial-scale batch processes monitoring via deep learning based soft sensor development
被引:29
|
作者:
Ji, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chem Technol, Coll Chem Engn, North Third Ring Rd 15, Beijing 100029, Peoples R ChinaBeijing Univ Chem Technol, Coll Chem Engn, North Third Ring Rd 15, Beijing 100029, Peoples R China
Ji, Cheng
[1
]
Ma, Fangyuan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chem Technol, Coll Chem Engn, North Third Ring Rd 15, Beijing 100029, Peoples R China
Tsinghua Univ, Wuxi Res Inst Appl Technol, Ctr Proc Monitoring & Data Anal, Wuxi 214072, Peoples R ChinaBeijing Univ Chem Technol, Coll Chem Engn, North Third Ring Rd 15, Beijing 100029, Peoples R China
Ma, Fangyuan
[1
,2
]
Wang, Jingde
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chem Technol, Coll Chem Engn, North Third Ring Rd 15, Beijing 100029, Peoples R ChinaBeijing Univ Chem Technol, Coll Chem Engn, North Third Ring Rd 15, Beijing 100029, Peoples R China
Wang, Jingde
[1
]
Sun, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chem Technol, Coll Chem Engn, North Third Ring Rd 15, Beijing 100029, Peoples R ChinaBeijing Univ Chem Technol, Coll Chem Engn, North Third Ring Rd 15, Beijing 100029, Peoples R China
Sun, Wei
[1
]
机构:
[1] Beijing Univ Chem Technol, Coll Chem Engn, North Third Ring Rd 15, Beijing 100029, Peoples R China
[2] Tsinghua Univ, Wuxi Res Inst Appl Technol, Ctr Proc Monitoring & Data Anal, Wuxi 214072, Peoples R China
Data-driven soft sensor technology has been widely developed to estimate quality-related variables, while following difficulties still limit its application in batch processes, such as different initial conditions, uneven-length of batches, and the extraction of within-batch multiphase features. To address these problems, a qual-ity prediction and monitoring framework is proposed. Variables related to quality-related variables are first selected, and a data stacked strategy is proposed to transform three-dimensional batch data into time-lagged sequences that can be fed into soft sensor models. Aiming to extract the multiphase features, a novel differen-tial recurrent neural networks is established by embedding differential operations into long short-term memory neural networks. Moreover, to ensure profitability, prediction residuals are employed for quality monitoring. Case study on a simulation dataset and an industrial-scale penicillin fermentation process demonstrates the effectiveness of the proposed method and its applicability to batch process monitoring and control in both ac-ademic research and industrial operation.
机构:
Univ Fed Rio Grande do Norte, Dept Comp & Automat Engn, 3000 Senador Salgado Filho Ave, BR-59078970 Natal, RN, BrazilUniv Fed Rio Grande do Norte, Dept Comp & Automat Engn, 3000 Senador Salgado Filho Ave, BR-59078970 Natal, RN, Brazil
de Lima, Jean Mario Moreira
de Araujo, Fabio Meneghetti Ugulino
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Norte, Dept Comp & Automat Engn, 3000 Senador Salgado Filho Ave, BR-59078970 Natal, RN, BrazilUniv Fed Rio Grande do Norte, Dept Comp & Automat Engn, 3000 Senador Salgado Filho Ave, BR-59078970 Natal, RN, Brazil
机构:
Univ Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, Brazil
Lemos, Tiago
Campos, Luiz Felipe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, Brazil
Campos, Luiz Felipe
Melo, Afranio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, Brazil
Melo, Afranio
Clavijo, Nayher
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, Brazil
Clavijo, Nayher
Soares, Rafael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, Brazil
Optimatech Ltd, Cidade Univ, BR-21941614 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, Brazil
Soares, Rafael
Camara, Mauricio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, Brazil
Optimatech Ltd, Cidade Univ, BR-21941614 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, Brazil
Camara, Mauricio
Feital, Thiago
论文数: 0引用数: 0
h-index: 0
机构:
Optimatech Ltd, Cidade Univ, BR-21941614 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, Brazil
Feital, Thiago
Anzai, Thiago
论文数: 0引用数: 0
h-index: 0
机构:
Petrobras Petroleo Brasileiro SA, Ctr Pesquisas Leopoldo Americo Miguez de Mello, CENPES, BR-21941915 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, Brazil
Anzai, Thiago
Pinto, Jose Carlos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 69502, BR-21941972 Rio De Janeiro, Brazil