Meshfree Generalized Multiscale Finite Element Method

被引:9
作者
Nikiforov, Djulustan [1 ]
机构
[1] North Eastern Fed Univ, Yakutsk, Russia
关键词
Generalized multiscale finite element; method; Meshfree method; Fractured domain; DISCONTINUOUS GALERKIN METHOD; UNSTRUCTURED GRIDS; ELLIPTIC PROBLEMS; VOLUME METHOD; FLOW; EQUATION;
D O I
10.1016/j.jcp.2022.111798
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a new multiscale approach with a meshfree coarse scale. A coarse scale is constructed on the basis of an already existing computational grid on a fine scale, depending on the heterogeneous parameters of the problem. This approach is based on the Generalized Multiscale Finite Element Method (GMsFEM), where the heterogeneous parameters of the problem are taken into account on a coarse scale using multiscale basis functions. These multiscale basis functions are constructed at an offline stage using local spectral problems. To represent the fractures on a fine grid, the Discrete Fracture Model (DFM) is used. The results of a numerical solution for two-dimensional and three-dimensional problems are presented.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Online Meshfree Generalized Multiscale Finite Element Method for Flows in Fractured Media
    D. Y. Nikiforov
    S. P. Stepanov
    N. P. Lazarev
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5391 - 5401
  • [2] Adaptive generalized multiscale approximation of a mixed finite element method with velocity elimination
    He, Zhengkang
    Chung, Eric T.
    Chen, Jie
    Chen, Zhangxin
    COMPUTATIONAL GEOSCIENCES, 2021, 25 (05) : 1681 - 1708
  • [3] A mixed multiscale spectral generalized finite element method
    Alber, Christian
    Ma, Chupeng
    Scheichl, Robert
    NUMERISCHE MATHEMATIK, 2025, 157 (01) : 1 - 40
  • [4] Generalized multiscale finite element methods (GMsFEM)
    Efendiev, Yalchin
    Galvis, Juan
    Hou, Thomas Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 251 : 116 - 135
  • [5] REITERATED MULTISCALE MODEL REDUCTION USING THE GENERALIZED MULTISCALE FINITE ELEMENT METHOD
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Vasilyeva, Maria
    International Journal for Multiscale Computational Engineering, 2016, 14 (06) : 535 - 554
  • [6] An online generalized multiscale approximation of the multipoint flux mixed finite element method
    He, Zhengkang
    Chen, Jie
    Chen, Zhangxin
    Zhang, Tong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 437
  • [7] Generalized Multiscale Finite Element Method for thermoporoelasticity problems in heterogeneous and fractured media
    Ammosov, Dmitry
    Vasilyeva, Maria
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 407
  • [8] Constraint Energy Minimizing Generalized Multiscale Finite Element Method
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 339 : 298 - 319
  • [9] A generalized multiscale finite element method for the Brinkman equation
    Galvis, Juan
    Li, Guanglian
    Shi, Ke
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 294 - 309
  • [10] A weak Galerkin generalized multiscale finite element method
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 305 : 68 - 81