Biomass immobilization in hydrolyzed lignocellulosic material can enhance biohydrogen production from cassava residues?

被引:8
|
作者
Bolonhesi, Isabela Bruna de Tavares Machado [1 ]
Andreani, Cristiane Lurdes [2 ]
de Melo, Marcelo Rodrigues [3 ]
Gomes, Simone Dasmasceno [4 ]
Lopes, Deize Dias [1 ]
机构
[1] Univ Estadual Londrina, Urban Planning & Technol Ctr, Rodovia Celso Garcia Cid PR 445, BR-86057970 Londrina, PR, Brazil
[2] Univ Fed Roraima, Ave Cap Ene Garces, 2413 Aeroporto, BR-69310000 Boa Vista, RR, Brazil
[3] Univ Estadual Londrina, Dept Biochem & Biotechnol, Rodovia Celso Garcia Cid PR 445, BR-86057970 Londrina, PR, Brazil
[4] State Univ West Parana, Ctr Exact & Technol Sci, 2069 Univ St, BR-85819210 Cascavel, PR, Brazil
关键词
Acid hydrolysis; Steaming hydrolysis; Cell immobilization; Lignocellulosic biomass; Dark fermentation; Co-digestion; FERMENTATIVE HYDROGEN-PRODUCTION; ETHANOL-TYPE FERMENTATION; WASTE-WATER; PHYSICOCHEMICAL CHARACTERIZATION; RECENT INSIGHTS; FOOD WASTE; PRETREATMENT; BAGASSE; REACTOR; ANSBBR;
D O I
10.1016/j.bej.2022.108725
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This study evaluated cassava stems (CS) as support material and a potential co-substrate in dark fermentation. Pre-tests were carried out with cell immobilization in CS without hydrolysis and submitted to acid and steam hydrolysis. Subsequently, hydrogen production was evaluated in an anaerobic sequencing batch biofilm reactor inoculated with biomass immobilized in CS, using cassava starch wastewater as substrate (OLR of 11 and 15 gCarb L-1d-1). The reactor was run for 180 cycles with maximum volumetric hydrogen productivity and a yield of 1.48 LH2 L-1d-1 and 1.98 molH2 kg- 1Carb (OLR 15 gCarb L- 1d- 1). The carbohydrate conversion remained above 97% in both assays, with a predominance of the acetate-ethanol route. During the assays, the Food/Mi-croorganisms ratio remained between 0.8 and 1.0 gCarb gTVSd-1, promoting the biomass control in the reactor. The structural characterization of CS before and after fermentation indicates that the cellulose, hemicellulose, and lignin content in the stems were changed after hydrolysis and fermentation, confirming the material degradation. In addition, the hydrolysis increased the CS surface area and favored cell immobilization of hydrogen-producing microorganisms such as bacteria of the genus Clostridium and Hydrogenispora, demonstrating that CS can be an alternative support material and co-substrate to be explored in dark fermentation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A review on biohydrogen production through photo-fermentation of lignocellulosic biomass
    C. N. C. Hitam
    A. A. Jalil
    Biomass Conversion and Biorefinery, 2023, 13 : 8465 - 8483
  • [22] Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies
    Bhatia, Shashi Kant
    Jagtap, Sujit Sadashiv
    Bedekar, Ashwini Ashok
    Bhatia, Ravi Kant
    Rajendran, Karthik
    Pugazhendhi, Arivalagan
    Rao, Christopher, V
    Atabani, A. E.
    Kumar, Gopalakrishnan
    Yang, Yung-Hun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 765
  • [23] Dynamic membrane bioreactor for high rate continuous biohydrogen production from algal biomass
    Sim, Young-Bo
    Jung, Ju-Hyeong
    Baik, Jong-Hyun
    Park, Jong-Hun
    Kumar, Gopalakrishnan
    Banu, J. Rajesh
    Kim, Sang-Hyoun
    BIORESOURCE TECHNOLOGY, 2021, 340 (340)
  • [24] The effect of HRT on biohydrogen production from acid hydrolyzed waste wheat in a continuously operated packed bed reactor
    Kirli, Betul
    Karapinar, Ilgi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (23) : 10678 - 10685
  • [25] Effect of physical and thermal pretreatment of lignocellulosic biomass on biohydrogen production by thermochemical route: A critical review
    Vivekanand, Vivekanand
    Singh, Rickwinder
    Kumar, Rajesh
    Sarangi, Prakash Kumar
    Kovalev, Andrey A.
    BIORESOURCE TECHNOLOGY, 2023, 369
  • [26] Bioethanol Production from Lignocellulosic Biomass, A Review
    Gamage, Joanne
    Lam, Howard
    Zhang, Zisheng
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2010, 4 (01) : 3 - 11
  • [27] BIOHYDROGEN PRODUCTION FROM CASSAVA WASTEWATER IN AN ANAEROBIC FLUIDIZED BED REACTOR
    Amorim, N. C. S.
    Alves, I.
    Martins, J. S.
    Amorim, E. L. C.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2014, 31 (03) : 603 - 612
  • [28] Seed inocula for biohydrogen production from biodiesel solid residues
    Kumar, Gopalakrishnan
    Lay, Chyi-How
    Chu, Chen-Yeon
    Wu, Jou-Hsien
    Lee, Shih-Chi
    Lin, Chiu-Yue
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (20) : 15489 - 15495
  • [29] Enhancing biohydrogen production from lignocellulosic biomass of Paulownia waste by charge facilitation in Zn doped SnO2 nanocatalysts
    Tahir, Nadeem
    Nadeem, Faiqa
    Jabeen, Farzana
    Singhania, Reeta Rani
    Qazi, Umair Yaqub
    Patel, Anil Kumar
    Javaid, Rahat
    Zhang, Quanguo
    BIORESOURCE TECHNOLOGY, 2022, 355
  • [30] Strategies to enhance biohydrogen production from microalgae: A comprehensive review
    Rady, Hadeer A.
    Ali, Sameh S.
    El-Sheekh, Mostafa M.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 356