Concave-convex critical problems for the spectral fractional laplacian with mixed boundary conditions

被引:1
作者
Ortega, Alejandro [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Ave Univ 30, Leganes 28911, Madrid, Spain
关键词
Fractional Laplacian (Primary); Critical problem; Concave-Convex nonlinearities; Mixed boundary conditions; ELLIPTIC PROBLEMS; EQUATION; REGULARITY; PRINCIPLE;
D O I
10.1007/s13540-022-00118-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the existence of solutions to the following critical fractional problem with concave-convex nonlinearities, {(-delta)(s)u = lambda u(q) + u(2s & lowast; -1), u > 0 in omega,u = 0 on sigma(D),& part;u/& part;nu = 0 on sigma(N), with omega subset of R-N, N > 2s, a smooth bounded domain, 1/2 < s < 1, 0 < q < 2(s)* - 1, q &NOTEQUexpressionL; 1, being 2(s)* = 2N/n-2s the critical fractional Sobolev exponent, lambda > 0, nu is the outwards normal to & part;omega; sigma(D), sigma(N) are smooth (N - 1)-dimensional submanifolds of & part;omega such that sigma(D )boolean OR sigma(N )= & part;omega, sigma(D )& cap; sigma(N) = empty set , and sigma(D) & cap; (sigma)over bar(N) = gamma is a smooth (N - 2)-dimensional submanifold of & part;omega. In particular, we will prove that, for the sublinear case 0 < q < 1, there exists at least two solutions for every 0 < lambda < lambda for certain lambda is an element of R while, for the superlinear case 1 < q < 2(s)& lowast; - 1, we will prove that there exists at least one solution for every lambda > 0. We will also prove that solutions are bounded.
引用
收藏
页码:305 / 335
页数:31
相关论文
共 30 条
  • [1] Abdellaoui B, 2006, ADV DIFFERENTIAL EQU, V11, P667
  • [2] COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS
    AMBROSETTI, A
    BREZIS, H
    CERAMI, G
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) : 519 - 543
  • [3] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [4] MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM
    AZORERO, JG
    ALONSO, IP
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) : 877 - 895
  • [5] A critical fractional equation with concave convex power nonlinearities
    Barrios, B.
    Colorado, E.
    Servadei, R.
    Soria, F.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04): : 875 - 900
  • [6] On some critical problems for the fractional Laplacian operator
    Barrios, B.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) : 6133 - 6162
  • [7] Bisci GM, 2015, ADV DIFFERENTIAL EQU, V20, P635
  • [8] A concave-convex elliptic problem involving the fractional Laplacian
    Braendle, C.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) : 39 - 71
  • [9] POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS
    BREZIS, H
    NIRENBERG, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) : 437 - 477
  • [10] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490