RadFormer: Transformers with global-local attention for interpretable and accurate Gallbladder Cancer detection

被引:31
作者
Basu, Soumen [1 ]
Gupta, Mayank [1 ]
Rana, Pratyaksha [2 ]
Gupta, Pankaj [2 ]
Arora, Chetan [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Comp Sci, New Delhi, India
[2] Postgrad Inst Med Educ & Res, Dept Radiodiag & Imaging, Chandigarh, India
关键词
Explainable AI; Visual transformer; Gallbladder Cancer; Ultrasound Sonography; NEURAL-NETWORK; DEEP; DIAGNOSIS; WALL; SEGMENTATION; ULTRASOUND;
D O I
10.1016/j.media.2022.102676
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel deep neural network architecture to learn interpretable representation for medical image analysis. Our architecture generates a global attention for region of interest, and then learns bag of words style deep feature embeddings with local attention. The global, and local feature maps are combined using a contemporary transformer architecture for highly accurate Gallbladder Cancer (GBC) detection from Ultrasound (USG) images. Our experiments indicate that the detection accuracy of our model beats even human radiologists, and advocates its use as the second reader for GBC diagnosis. Bag of words embeddings allow our model to be probed for generating interpretable explanations for GBC detection consistent with the ones reported in medical literature. We show that the proposed model not only helps understand decisions of neural network models but also aids in discovery of new visual features relevant to the diagnosis of GBC. Source-code is available at https://github.com/sbasu276/RadFormer.
引用
收藏
页数:13
相关论文
共 86 条
[1]  
Basu Soumen, 2022, CVPR, P20886
[2]   Gallbladder cancer in India: A dismal picture [J].
Batra, Y ;
Pal, S ;
Dutta, U ;
Desai, P ;
Garg, PK ;
Makharia, G ;
Ahuja, V ;
Pande, GK ;
Sahni, P ;
Chattopadhyay, TK ;
Tandon, RK .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2005, 20 (02) :309-314
[3]   Network Dissection: Quantifying Interpretability of Deep Visual Representations [J].
Bau, David ;
Zhou, Bolei ;
Khosla, Aditya ;
Oliva, Aude ;
Torralba, Antonio .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :3319-3327
[4]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[5]  
Bethge M, 2019, Arxiv, DOI arXiv:1904.00760
[6]   Diagnostic accuracy of imaging modalities in differentiating xanthogranulomatous cholecystitis from gallbladder cancer [J].
Bo, Xiaobo ;
Chen, Erbao ;
Wang, Jie ;
Nan, Lingxi ;
Xin, Yanlei ;
Wang, Changchen ;
Lu, Qing ;
Rao, Shengxiang ;
Pang, Lifang ;
Li, Min ;
Lu, Pinxiang ;
Zhang, Dexiang ;
Liu, Houbao ;
Wang, Yueqi .
ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7 (22)
[7]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[9]  
Cao H., 2021, arXiv, DOI DOI 10.48550/ARXIV.2105.05537
[10]   MR imaging of the gallbladder: A pictorial essay [J].
Catalano, Onofrio A. ;
Sahani, Dushyant V. ;
Kalva, Sanjeeva P. ;
Cushing, Matthew S. ;
Hahn, Peter F. ;
Brown, Jeffery J. ;
Edelman, Robert R. .
RADIOGRAPHICS, 2008, 28 (01) :135-155