Resting-state functional MRI in multicenter studies on multiple sclerosis: a report on raw data quality and functional connectivity features from the Italian Neuroimaging Network Initiative

被引:8
作者
De Rosa, Alessandro Pasquale [1 ]
Esposito, Fabrizio [1 ]
Valsasina, Paola [2 ]
D'Ambrosio, Alessandro [1 ]
Bisecco, Alvino [1 ]
Rocca, Maria A. [2 ,3 ,6 ]
Tommasin, Silvia [7 ]
Marzi, Chiara [8 ]
De Stefano, Nicola [9 ]
Battaglini, Marco [9 ]
Pantano, Patrizia [7 ]
Cirillo, Mario [1 ]
Tedeschi, Gioacchino [1 ]
Filippi, Massimo [2 ,3 ,4 ,5 ,6 ]
Gallo, Antonio [1 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Adv Med & Surg Sci, Piazza Luigi Miraglia 2, I-80138 Naples, Italy
[2] IRCCS San Raffaele Sci Inst, Div Neurosci, Neuroimaging Res Unit, Via Olgettina 60, I-20132 Milan, Italy
[3] IRCCS San Raffaele Sci Inst, Neurol Unit, Via Olgettina 60, I-20132 Milan, Italy
[4] IRCCS San Raffaele Sci Inst, Neurorehabil Unit, Via Olgettina 60, I-20132 Milan, Italy
[5] IRCCS San Raffaele Sci Inst, Neurophysiol Serv, Via Olgettina 60, I-20132 Milan, Italy
[6] Univ Vita Salute San Raffaele, Via Olgettina 58, I-20132 Milan, Italy
[7] Sapienza Univ Rome, Dept Human Neurosci, Viale Univ 30, I-00185 Rome, Italy
[8] Natl Res Council CNR, Inst Appl Phys Nello Cararra IFAC, Via Madonna Piano 10, I-50019 Florence, Italy
[9] Univ Siena, Dept Med Surg & Neurosci, Siena, Italy
关键词
Multiple sclerosis; MS; Quality control; MRI; Functional magnetic resonance imaging; Functional connectivity; SIGNAL-TO-NOISE; MOTION ARTIFACTS; FMRI; BRAIN; IMPACT; REPRODUCIBILITY; HARMONIZATION; VARIABILITY; STRATEGIES; DIAGNOSIS;
D O I
10.1007/s00415-022-11479-z
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The Italian Neuroimaging Network Initiative (INNI) is an expanding repository of brain MRI data from multiple sclerosis (MS) patients recruited at four Italian MRI research sites. We describe the raw data quality of resting-state functional MRI (RS-fMRI) time-series in INNI and the inter-site variability in functional connectivity (FC) features after unified automated data preprocessing. MRI datasets from 489 MS patients and 246 healthy control (HC) subjects were retrieved from the INNI database. Raw data quality metrics included temporal signal-to-noise ratio (tSNR), spatial smoothness (FWHM), framewise displacement (FD), and differential variation in signals (DVARS). Automated preprocessing integrated white-matter lesion segmentation (SAMSEG) into a standard fMRI pipeline (fMRIPrep). FC features were calculated on pre-processed data and harmonized between sites (Combat) prior to assessing general MS-related alterations. Across centers (both groups), median tSNR and FWHM ranged from 47 to 84 and from 2.0 to 2.5, and median FD and DVARS ranged from 0.08 to 0.24 and from 1.06 to 1.22. After preprocessing, only global FC-related features were significantly correlated with FD or DVARS. Across large-scale networks, age/sex/FD-adjusted and harmonized FC features exhibited both inter-site and site-specific inter-group effects. Significant general reductions were obtained for somatomotor and limbic networks in MS patients (vs. HC). The implemented procedures provide technical information on raw data quality and outcome of fully automated preprocessing that might serve as reference in future RS-fMRI studies within INNI. The unified pipeline introduced little bias across sites and appears suitable for multisite FC analyses on harmonized network estimates.
引用
收藏
页码:1047 / 1066
页数:20
相关论文
共 90 条
  • [1] Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier
    Abdulkadir, Ahmed
    Mortamet, Benedicte
    Vemuri, Prashanthi
    Jack, Clifford R., Jr.
    Krueger, Gunnar
    Kloeppel, Stefan
    [J]. NEUROIMAGE, 2011, 58 (03) : 785 - 792
  • [2] A resting state fMRI analysis pipeline for pooling inference across diverse cohorts: an ENIGMA rs-fMRI protocol
    Adhikari, Bhim M.
    Jahanshad, Neda
    Shukla, Dinesh
    Turner, Jessica
    Grotegerd, Dominik
    Dannlowski, Udo
    Kugel, Harald
    Engelen, Jennifer
    Dietsche, Bruno
    Krug, Axel
    Kircher, Tilo
    Fieremans, Els
    Veraart, Jelle
    Novikov, Dmitry S.
    Boedhoe, Premika S. W.
    van der Werf, Ysbrand D.
    van den Heuvel, Odile A.
    Ipser, Jonathan
    Uhlmann, Anne
    Stein, Dan J.
    Dickie, Erin
    Voineskos, Aristotle N.
    Malhotra, Anil K.
    Pizzagalli, Fabrizio
    Calhoun, Vince D.
    Waller, Lea
    Veer, Ilja M.
    Walter, Hernik
    Buchanan, Robert W.
    Glahn, David C.
    Hong, L. Elliot
    Thompson, Paul M.
    Kochunov, Peter
    [J]. BRAIN IMAGING AND BEHAVIOR, 2019, 13 (05) : 1453 - 1467
  • [3] Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank
    Alfaro-Almagro, Fidel
    Jenkinson, Mark
    Bangerter, Neal K.
    Andersson, Jesper L. R.
    Griffanti, Ludovica
    Douaud, Gwenaelle
    Sotiropoulos, Stamatios N.
    Jbabdi, Saad
    Hernandez-Fernandez, Moises
    Vallee, Emmanuel
    Vidaurre, Diego
    Webster, Matthew
    McCarthy, Paul
    Rorden, Christopher
    Daducci, Alessandro
    Alexander, Daniel C.
    Zhang, Hui
    Dragonu, Iulius
    Matthews, Paul M.
    Miller, Karla L.
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2018, 166 : 400 - 424
  • [4] A naturalistic neuroimaging database for understanding the brain using ecological stimuli
    Aliko, Sarah
    Huang, Jiawen
    Gheorghiu, Florin
    Meliss, Stefanie
    Skipper, Jeremy I.
    [J]. SCIENTIFIC DATA, 2020, 7 (01)
  • [5] Multivariate consistency of resting-state fMRI connectivity maps acquired on a single individual over 2.5 years, 13 sites and 3 vendors
    Badhwar, AmanPreet
    Collin-Verreault, Yannik
    Orban, Pierre
    Urchs, Sebastian
    Chouinard, Isabelle
    Vogel, Jacob
    Potvin, Olivier
    Duchesne, Simon
    Bellec, Pierre
    [J]. NEUROIMAGE, 2020, 205
  • [6] How reliable are the results from functional magnetic resonance imaging?
    Bennett, Craig M.
    Miller, Michael B.
    [J]. YEAR IN COGNITIVE NEUROSCIENCE 2010, 2010, 1191 : 133 - 155
  • [7] Resting-State Functional Correlates of Social Cognition in Multiple Sclerosis: An Explorative Study
    Bisecco, Alvino
    Altieri, Manuela
    Santangelo, Gabriella
    Di Nardo, Federica
    Docimo, Renato
    Caiazzo, Giuseppina
    Capuano, Rocco
    Pappacena, Simona
    d'Ambrosio, Alessandro
    Bonavita, Simona
    Trojsi, Francesca
    Cirillo, Mario
    Esposito, Fabrizio
    Tedeschi, Gioacchino
    Gallo, Antonio
    [J]. FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2020, 13
  • [8] Reduction of across-run variability of temporal SNR in accelerated EPI time-series data through FLEET-based robust autocalibration
    Blazejewska, Anna I.
    Bhat, Himanshu
    Wald, Lawrence L.
    Polimeni, Jonathan R.
    [J]. NEUROIMAGE, 2017, 152 : 348 - 359
  • [9] Motion artifact in magnetic resonance imaging: Implications for automated analysis
    Blumenthal, JD
    Zijdenbos, A
    Molloy, E
    Giedd, JN
    [J]. NEUROIMAGE, 2002, 16 (01) : 89 - 92
  • [10] Sample size requirements for estimating Pearson, Kendall and Spearman correlations
    Bonett, DG
    Wright, TA
    [J]. PSYCHOMETRIKA, 2000, 65 (01) : 23 - 28