Isolated transition metal nanoparticles anchored on N-doped carbon nanotubes as scalable bifunctional electrocatalysts for efficient Zn-air batteries

被引:35
|
作者
Zhang, Baohua [1 ]
Wu, Meiying [1 ,2 ]
Zhang, Liang [2 ]
Xu, Yun [2 ]
Hou, Weidong [2 ]
Guo, Huazhang [2 ]
Wang, Liang [2 ]
机构
[1] Shanghai Univ, School of Environm & Chem Engn, Dept Chem Engn, 99 Shangda Rd, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Inst Nanochem & Nanobiol, Sch Environm & Chem Engn, 99 Shangda Rd, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Co nanoparticles; Carbon nanotubes; N-doped; Bifunctional catalysts; Zn-air battery; ACTIVE-SITES; NANOSHEETS;
D O I
10.1016/j.jcis.2022.09.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accelerating the sluggish anode reaction in a Zn-air battery can improve its energy efficiency, but the large-scale development of this battery is hindered by the lack of bifunctional catalysts. Herein, we designed a one-step carbonization strategy for synthesizing monodispersed Co nanoparticles supported on N-doped carbon nanotube (Co/CNT), which shows excellent bifunctional electrocatalytic performance with long-term durability for oxygen reduction reaction/oxygen evolution reaction. The formation of car-bon substrates from the carbonization of nitrogenous organic molecules are benefit to capture more Co nanoparticles though strong metal-substrate interaction, then construct high-density effective active sites of the Lewis base for accelerating the electrocatalytic reaction process. To verify its superior performance, a rechargeable Zn-air battery with a Co/CNT air electrode was subsequently constructed. The battery exhibits an open-circuit voltage of 1.41 V and a specific discharge capacity of 835.2 mAh/gZn, which can be continuously charged and discharged with good cycle stability. Our study provides a new strategy for developing various practical carbon-based non-noble metallic bifunctional electrocatalysts with promising performance in electrocatalysis and batteries to achieve the target of carbon neutrality. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:640 / 648
页数:9
相关论文
共 50 条
  • [1] FeNi alloy anchored on waste cotton derived N-doped carbon nanosheets as efficient bifunctional electrocatalysts for rechargeable Zn-air batteries
    Sun, Jiale
    Huang, Xia
    Xu, Chenxi
    Yao, Yong
    Wu, Jiexing
    Wang, Shuai
    He, Yongkang
    Zhou, Haihui
    Li, Huanxin
    Kuang, Yafei
    Huang, Zhongyuan
    APPLIED SURFACE SCIENCE, 2024, 674
  • [2] FeP nanoparticles anchored on N-doped carbon as ORR/OER bifunctional catalyst and its application in Zn-air batteries
    Su, Yifei
    Du, Hongmei
    Xu, Jingjing
    Zhao, Jinsheng
    Zhang, Ningqiang
    Lu, Bang
    Yan, Han
    Qu, Konggang
    Zhang, Xianxi
    FUEL, 2025, 387
  • [3] Ultrafine Ir nanoparticles anchored on carbon nanotubes as efficient bifunctional oxygen catalysts for Zn-air batteries
    Wang, Jianglian
    Ni, Mengdi
    Qian, Jinjie
    Ge, Yongjie
    Cai, Dong
    Nie, Huagui
    Zhou, Xuemei
    Yang, Zhi
    CHEMICAL COMMUNICATIONS, 2024, 60 (50) : 6415 - 6418
  • [4] Efficient MnO and Co nanoparticles coated with N-doped carbon as a bifunctional electrocatalyst for rechargeable Zn-air batteries
    Peng, Lijuan
    Peng, Xiaomin
    Zhu, Zhaogen
    Xu, Qianqun
    Luo, Kaifen
    Ni, Zhaotong
    Yuan, Dingsheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (50) : 19126 - 19136
  • [5] Anchored NiCoMnS4 nanoparticles on N-doped rGO: High-performance bifunctional electrocatalysts for rechargeable Zn-Air batteries
    Pendashteh, Afshin
    Sanchez, Jaime S.
    Palma, Jesus
    Anderson, Marc
    Marcilla, Rebeca
    ENERGY STORAGE MATERIALS, 2019, 20 : 216 - 224
  • [6] Biomass derived Fe,N-doped carbon material as bifunctional electrocatalysts for rechargeable Zn-air batteries
    Luo, Xiaoli
    Liu, Zhen
    Ma, Yaping
    Nan, Yanxia
    Gu, Yu
    Li, Shunli
    Zhou, Qiulan
    Mo, Junming
    Zhou, Qiulan (qlzhou@hnu.edu.cn); Mo, Junming (jmo1@e.ntu.edu.sg), 1600, Elsevier Ltd (888):
  • [7] Biomass derived Fe,N-doped carbon material as bifunctional electrocatalysts for rechargeable Zn-air batteries
    Luo, Xiaoli
    Liu, Zhen
    Ma, Yaping
    Nan, Yanxia
    Gu, Yu
    Li, Shunli
    Zhou, Qiulan
    Mo, Junming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 888
  • [8] Ni single atoms anchored on N-doped carbon nanosheets as bifunctional electrocatalysts for Urea-assisted rechargeable Zn-air batteries
    Jiang, Hao
    Xia, Jing
    Jiao, Long
    Meng, Xiangmin
    Wang, Pengfei
    Lee, Chun-Sing
    Zhang, Wenjun
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 310
  • [9] Facile in situ coupling CoFe/Co nanoparticles and N-doped carbon nanotubes/graphitic nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
    Zhu, Ping
    Gao, Jingxia
    Liu, Sa
    JOURNAL OF POWER SOURCES, 2020, 449
  • [10] NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries
    Lei, Hang
    Wang, Zilong
    Yang, Fan
    Huang, Xueqi
    Liu, Jinghuan
    Liang, Yongyin
    Xie, Junpeng
    Javed, Muhammad Sufyan
    Lu, Xihong
    Tan, Shaozao
    Mai, Wenjie
    NANO ENERGY, 2020, 68