Accuracy Rate Maximization in Edge Federated Learning With Delay and Energy Constraints

被引:5
作者
Yuan, Peiyan [1 ,2 ]
Huang, Rong [1 ,2 ]
Zhang, Junna [1 ,2 ]
Zhang, En [1 ,2 ]
Zhao, Xiaoyan [1 ,2 ]
机构
[1] Henan Normal Univ, Sch Comp & Informat Engn, Xinxiang 453007, Henan, Peoples R China
[2] Big Data Engn Lab Teaching Resources, Xinxiang 453007, Henan, Peoples R China
来源
IEEE SYSTEMS JOURNAL | 2023年 / 17卷 / 02期
基金
中国国家自然科学基金;
关键词
Training; Mobile handsets; Servers; Delays; Computational modeling; Energy consumption; Collaborative work; Cooperative training; edge computing; federated learning; intelligent recognition; tensor-flow lite; OPTIMIZATION;
D O I
10.1109/JSYST.2022.3203727
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deploying deep learning models on edge servers can effectively alleviate the pressure on cloud data centers in computing, communication, and energy, etc. In this study, we attempt to extend this deployment scheme from edge servers to mobile terminals to further save spectrum resources, utilize communication resources, and provide intelligent applications. Unfortunately, the learning model experiences a slow convergence speed, and the mobile terminal consumes much energy if the model is only trained on the local devices with weak computing power. Therefore, we deploy deep learning algorithms (both in edge servers and mobile terminals) by considering the delay and energy consumption constraints of terminals in task processing. Specifically, a lightweight federated learning model is first proposed through the cooperative training between edge servers and mobile terminals. The trained model is then migrated to mobile terminals. Finally, image identification is considered to verify the effectiveness and efficiency of our proposed model. The experimental results show that the accuracy of the model reaches 90% using two datasets and three network models. In addition, it further reduces the processing delay and saves energy.
引用
收藏
页码:2053 / 2064
页数:12
相关论文
共 28 条
[1]   Distributed optimization for deep learning with gossip exchange [J].
Blot, Michael ;
Picard, David ;
Thome, Nicolas ;
Cord, Matthieu .
NEUROCOMPUTING, 2019, 330 :287-296
[2]  
Bonawitz K., 2019, Proc. Mach. Learn. Syst., V1, P374
[3]  
Chen T., 2020, ARXIV, DOI DOI 10.48550/ARXIV.2002.11360
[4]   Differential Evolution: A Survey of the State-of-the-Art [J].
Das, Swagatam ;
Suganthan, Ponnuthurai Nagaratnam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :4-31
[5]  
He K., 2016, 2016 IEEE C COMP VIS, DOI DOI 10.1109/CVPR.2016.90
[6]  
He L, 2018, ADV NEUR IN, V31
[7]  
Huang G., 2017, P IEEE C COMP VIS PA, P4700, DOI [DOI 10.1109/CVPR.2017.243, 10.1109/CVPR.2017.243]
[8]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210
[9]   Federated Learning for Edge Networks: Resource Optimization and Incentive Mechanism [J].
Khan, Latif U. ;
Pandey, Shashi Raj ;
Tran, Nguyen H. ;
Saad, Walid ;
Han, Zhu ;
Nguyen, Minh N. H. ;
Hong, Choong Seon .
IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (10) :88-93
[10]   Deep Unified Model For Face Recognition Based on Convolution Neural Network and Edge Computing [J].
Khan, Muhammad Zeeshan ;
Harous, Saad ;
Ul Hassan, Saleet ;
Khan, Muhammad Usman Ghani ;
Iqbal, Razi ;
Mumtaz, Shahid .
IEEE ACCESS, 2019, 7 :72622-72633