Area-minimizing properties of Pansu spheres in the sub-Riemannian 3-sphere

被引:0
|
作者
Hurtado, Ana [1 ,2 ]
Rosales, Cesar [1 ,2 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Granada, Excellence Res Unit, Modeling Nat MNat, E-18071 Granada, Spain
关键词
Sub-Riemannian spheres; Plateau problem; isoperimetric problem; calibrations; ISOPERIMETRIC-INEQUALITIES; STATIONARY SURFACES; MINIMAL GRAPHS; HEISENBERG; REGULARITY;
D O I
10.1515/acv-2021-0050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the sub-Riemannian 3- sphere (S-3, gh) obtained by restriction of the Riemannian metric of constant curvature 1 to the planar distribution orthogonal to the vertical Hopf vector field. It was shown in [A. Hurtado and C. Rosales, Area-stationary surfaces inside the sub-Riemannian three-sphere, Math. Ann. 340 (2008), no. 3, 675-708] that (S-3, g(h)) contains a family of spherical surfaces {S-lambda}(lambda >= 0) with constant mean curvature.. In this work, we first prove that the two closed half-spheres of S-0 with boundary C-0 = {0} x S-1 minimize the sub-Riemannian area among compact C-1 surfaces with the same boundary. We also see that the only C-2 solutions to this Plateau problem are vertical translations of such half-spheres. Second, we establish that the closed 3-ball enclosed by a sphere S-lambda with lambda > 0 uniquely solves the isoperimetric problem in (S-3, g(h)) for C-1 sets inside a vertical solid tube and containing a horizontal section of the tube. The proofs mainly rely on calibration arguments.
引用
收藏
页码:689 / 704
页数:16
相关论文
共 50 条
  • [31] Examples of Area-Minimizing Surfaces in 3-manifolds
    Coskunuzer, Baris
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (06) : 1613 - 1634
  • [32] THE CLASSIFICATION OF BRANCHED WILLMORE SPHERES IN THE 3-SPHERE AND THE 4-SPHERE
    Michelat, Alexis
    Riviere, Tristan
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2022, 55 (05): : 1199 - 1288
  • [33] Regularity and Continuity Properties of the Sub-Riemannian Exponential Map
    Samuël Borza
    Wilhelm Klingenberg
    Journal of Dynamical and Control Systems, 2023, 29 : 1385 - 1407
  • [34] Regularity and Continuity Properties of the Sub-Riemannian Exponential Map
    Borza, Samuel
    Klingenberg, Wilhelm
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (04) : 1385 - 1407
  • [35] Strong Sard conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3
    A. Belotto da Silva
    A. Figalli
    A. Parusiński
    L. Rifford
    Inventiones mathematicae, 2022, 229 : 395 - 448
  • [36] Strong Sard conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3
    da Silva, A. Belotto
    Figalli, A.
    Parusinski, A.
    Rifford, L.
    INVENTIONES MATHEMATICAE, 2022, 229 (01) : 395 - 448
  • [37] Asymptotic behaviour of the sphere and front of a flat sub-Riemannian structure on the Martinet distribution
    Bogaevsky, I. A.
    SBORNIK MATHEMATICS, 2022, 213 (05) : 624 - 640
  • [38] Area-Minimizing Projective Planes in 3-Manifolds
    Bray, H.
    Brendle, S.
    Eichmair, M.
    Neves, A.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (09) : 1237 - 1247
  • [39] Geodesics in the sub-Riemannian problem on the group SO(3)
    Beschastnyi, I. Yu.
    Sachkov, Yu. L.
    SBORNIK MATHEMATICS, 2016, 207 (07) : 915 - 941
  • [40] Generic singularities of sub-Riemannian metrics on R(3)
    Agrachev, A
    elAlaoui, EC
    Gauthier, JP
    Kupka, I
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (04): : 377 - 384