Data-Driven Robust Predictive Control for Mixed Vehicle Platoons Using Noisy Measurement

被引:38
作者
Lan, Jianglin [1 ]
Zhao, Dezong [2 ]
Tian, Daxin [3 ]
机构
[1] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[2] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
[3] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Adaptation models; Propulsion; Delay effects; Safety; Predictive models; Vehicle dynamics; Predictive control; Data-driven control; model predictive control; mixed vehicle platoon; reachability; ADAPTIVE CRUISE CONTROL; TRAFFIC-FLOW;
D O I
10.1109/TITS.2021.3128406
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates cooperative adaptive cruise control (CACC) for mixed platoons consisting of both human-driven vehicles (HVs) and automated vehicles (AVs). This research is critical because the penetration rate of AVs in the transportation system will remain unsaturated for a long time. Uncertainties and randomness are prevalent in human driving behaviours and highly affect the platoon safety and stability, which need to be considered in the CACC design. A further challenge is the difficulty to know the exact models of the HVs and the exact powertrain parameters of both AVs and HVs. To address these challenges, this paper proposes a data-driven model predictive control (MPC) that does not need the exact models of HVs or powertrain parameters. The MPC design adopts the technique of data-driven reachability to predict the future trajectory of the mixed platoon within a given horizon based on noisy vehicle measurements. Compared to the classic adaptive cruise control (ACC) and existing data-driven adaptive dynamic programming (ADP), the proposed MPC ensures satisfaction of constraints such as acceleration limit and safe inter-vehicular gap. With this salient feature, the proposed MPC has provably guarantee in establishing a safe and robustly stable mixed platoon despite of the velocity changes of the leading vehicle. The efficacy and advantage of the proposed MPC are verified through comparison with the classic ACC and data-driven ADP methods on both small and large mixed platoons.
引用
收藏
页码:6586 / 6596
页数:11
相关论文
共 50 条
  • [31] Frequency-Domain Data-Driven Predictive Control
    Meijer, T. J.
    Nouwens, S. A. N.
    Scheres, K. J. A.
    Dolk, V. S.
    Heemels, W. P. M. H.
    IFAC PAPERSONLINE, 2024, 58 (18): : 86 - 91
  • [32] Implicit Predictors in Regularized Data-Driven Predictive Control
    Klaedtke, Manuel
    Darup, Moritz
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2479 - 2484
  • [33] Cooperative predictive control for arbitrarily mixed vehicle platoons with guaranteed global optimality
    Zhan, Jingyuan
    Hua, Zhen
    Zhang, Liguo
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (08) : 1702 - 1714
  • [34] Data-Driven Koopman Model Predictive Control for Optimal Operation of High-Speed Trains
    Chen, Bin
    Huang, Zhiwu
    Zhang, Rui
    Liu, Weirong
    Li, Heng
    Wang, Jing
    Fan, Yunsheng
    Peng, Jun
    IEEE ACCESS, 2021, 9 : 82233 - 82248
  • [35] Constrained robust model predictive control embedded with a new data-driven technique
    Yang, L.
    Lu, J.
    Xu, Y.
    Li, D.
    Xi, Y.
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (16) : 2395 - 2405
  • [36] Data-Driven Multimodel Predictive Control for Multirate Sampled-Data Nonlinear Systems
    Han, Honggui
    Fu, Shijia
    Sun, Haoyuan
    Qiao, Junfei
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, 20 (03) : 2182 - 2194
  • [37] Robust direct data-driven controller tuning with an application to vehicle stability control
    Formentin, S.
    Garatti, S.
    Rallo, G.
    Savaresi, S. M.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (12) : 3752 - 3765
  • [38] Robust Stability Analysis of a Simple Data-Driven Model Predictive Control Approach
    Bongard, Joscha
    Berberich, Julian
    Koehler, Johannes
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 2625 - 2637
  • [39] Data-Driven Distributed Predictive Tracking Control for Heterogeneous Nonlinear Multiagent Systems With Communication Delays
    Huang, Yi
    Liu, Guo-Ping
    Yu, Yi
    Hu, Wenshan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (07) : 4786 - 4792
  • [40] Distributed robust economic predictive control of heterogeneous vehicle platoons under bounded disturbances
    Mu J.-B.
    Feng Y.-H.
    He D.-F.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (05): : 1386 - 1394