Data-Driven Robust Predictive Control for Mixed Vehicle Platoons Using Noisy Measurement

被引:38
|
作者
Lan, Jianglin [1 ]
Zhao, Dezong [2 ]
Tian, Daxin [3 ]
机构
[1] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[2] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
[3] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Adaptation models; Propulsion; Delay effects; Safety; Predictive models; Vehicle dynamics; Predictive control; Data-driven control; model predictive control; mixed vehicle platoon; reachability; ADAPTIVE CRUISE CONTROL; TRAFFIC-FLOW;
D O I
10.1109/TITS.2021.3128406
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates cooperative adaptive cruise control (CACC) for mixed platoons consisting of both human-driven vehicles (HVs) and automated vehicles (AVs). This research is critical because the penetration rate of AVs in the transportation system will remain unsaturated for a long time. Uncertainties and randomness are prevalent in human driving behaviours and highly affect the platoon safety and stability, which need to be considered in the CACC design. A further challenge is the difficulty to know the exact models of the HVs and the exact powertrain parameters of both AVs and HVs. To address these challenges, this paper proposes a data-driven model predictive control (MPC) that does not need the exact models of HVs or powertrain parameters. The MPC design adopts the technique of data-driven reachability to predict the future trajectory of the mixed platoon within a given horizon based on noisy vehicle measurements. Compared to the classic adaptive cruise control (ACC) and existing data-driven adaptive dynamic programming (ADP), the proposed MPC ensures satisfaction of constraints such as acceleration limit and safe inter-vehicular gap. With this salient feature, the proposed MPC has provably guarantee in establishing a safe and robustly stable mixed platoon despite of the velocity changes of the leading vehicle. The efficacy and advantage of the proposed MPC are verified through comparison with the classic ACC and data-driven ADP methods on both small and large mixed platoons.
引用
收藏
页码:6586 / 6596
页数:11
相关论文
共 50 条
  • [21] Learning-based robust model predictive control with data-driven Koopman operators
    Wang, Meixi
    Lou, Xuyang
    Cui, Baotong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (09) : 3295 - 3321
  • [22] Learning-based robust model predictive control with data-driven Koopman operators
    Meixi Wang
    Xuyang Lou
    Baotong Cui
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3295 - 3321
  • [23] Towards Data-Driven Predictive Control Using Wavelets
    Sathyanarayanan, Kiran Kumar
    Pan, Guanru
    Faulwasser, Timm
    IFAC PAPERSONLINE, 2023, 56 (02): : 632 - 637
  • [24] LMI-based Data-Driven Robust Model Predictive Control
    Hoang Hai Nguyen
    Friedel, Maurice
    Findeisen, Rolf
    IFAC PAPERSONLINE, 2023, 56 (02): : 4783 - 4788
  • [25] Data-Driven Predictive Control for Nonlinear Systems Using Feature Selection
    Reinhardt, Dirk
    Gros, Sebastien
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2576 - 2583
  • [26] Robust data-driven predictive control for unknown linear time-invariant systems
    Hu, Kaijian
    Liu, Tao
    SYSTEMS & CONTROL LETTERS, 2024, 193
  • [27] Data-Driven LSTM Model and Predictive Control for Vehicle Lateral Motion
    Kim, Kyeong Hyeon
    Jeong, Cheolmin
    Kim, Junghyun
    Lee, Sanghyuk
    Kang, Chang Mook
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (06) : 3635 - 3644
  • [28] Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
    Tellez-Castro, Duvan
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sofrony, Jorge
    Vande Wouwer, Alain
    ACTUATORS, 2022, 11 (06)
  • [29] Data-Driven Robust Control Using Reinforcement Learning
    Ngo, Phuong D.
    Tejedor, Miguel
    Godtliebsen, Fred
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [30] Cooperative distributed predictive control for collision-free vehicle platoons
    Zheng, Huarong
    Wu, Jun
    Wu, Weimin
    Negenborn, Rudy R.
    IET INTELLIGENT TRANSPORT SYSTEMS, 2019, 13 (05) : 816 - 824