Existence and asymptotic stability of mild solution to fractional Keller-Segel-Navier-Stokes system

被引:2
作者
Jiang, Ziwen [1 ]
Wang, Lizhen [1 ,2 ]
机构
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian, Peoples R China
[2] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710127, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic stability; fractional Keller-Segel-Navier-Stokes model; mild solution; well-posedness; GLOBAL EXISTENCE; BLOW-UP; DIFFUSION; MODEL; BEHAVIOR;
D O I
10.1002/mma.10096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the Cauchy problem for time-space fractional Keller-Segel-Navier-Stokes model in Double-struck capital Rd(d >= 2)$$ {\mathrm{\mathbb{R}}}<^>d\kern0.1em \left(d\ge 2\right) $$, which can describe the memory effect and anomalous diffusion of the considered system. The local and global existence and uniqueness in weak Lp$$ {L}<^>p $$ space are obtained by means of abstract fixed point theorem. Moreover, we explore the asymptotic stability of solutions as time goes to infinity.
引用
收藏
页码:9814 / 9833
页数:20
相关论文
共 50 条
[31]   Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity [J].
Wang, Yulan .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (14) :2745-2780
[32]   GLOBAL SOLVABILITY IN A THREE-DIMENSIONAL KELLER-SEGEL-NAVIER-STOKES SYSTEM WITH PRESCRIBED SIGNAL ON THE BOUNDARY [J].
Li, Jiawen ;
Wang, Yulan ;
Zhang, Yichen .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2025, 23 (05) :1271-1297
[33]   ABSENCE OF COLLAPSE INTO PERSISTENT DIRAC-TYPE SINGULARITIES IN A KELLER-SEGEL-NAVIER-STOKES SYSTEM INVOLVING LOCAL SENSING [J].
Winkler, Michael .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2023, 28 (11-12) :921-952
[34]   GLOBAL WEAK SOLUTIONS IN A THREE-DIMENSIONAL KELLER-SEGEL-NAVIER-STOKES SYSTEM MODELING CORAL FERTILIZATION [J].
Liu, Ling ;
Zheng, Jiashan ;
Bao, Gui .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (09) :3437-3460
[35]   Well-posedness and inviscid limits for the Keller-Segel-Navier-Stokes system of the parabolic-elliptic type [J].
Takeuchi, Taiki .
MATHEMATISCHE NACHRICHTEN, 2025, 298 (01) :53-86
[36]   Global solution with partial large initial data to the Keller-Segel-Navier-Stokes equations in Besov spaces [J].
Zhou, Xuhuan .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01)
[37]   Boundedness in a two-dimensional Keller-Segel-Navier-Stokes system involving a rapidly diffusing repulsive signal [J].
Winkler, Michael .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 71 (01)
[38]   SMALL-DENSITY SOLUTIONS TO KELLER-SEGEL-NAVIER-STOKES SYSTEM WITH RAPIDLY DECAYING DIFFUSIVITIES [J].
Ding, Mengyao ;
Hao, Xiaonan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (08) :4480-4496
[39]   A two-dimensional Keller-Segel-Navier-Stokes system with logarithmic sensitivity: generalized solutions and classical solutions [J].
Liu, Ji .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (01)
[40]   Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system [J].
Tao, Youshan ;
Winkler, Michael .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (06)