Existence and asymptotic stability of mild solution to fractional Keller-Segel-Navier-Stokes system

被引:1
|
作者
Jiang, Ziwen [1 ]
Wang, Lizhen [1 ,2 ]
机构
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian, Peoples R China
[2] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710127, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic stability; fractional Keller-Segel-Navier-Stokes model; mild solution; well-posedness; GLOBAL EXISTENCE; BLOW-UP; DIFFUSION; MODEL; BEHAVIOR;
D O I
10.1002/mma.10096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the Cauchy problem for time-space fractional Keller-Segel-Navier-Stokes model in Double-struck capital Rd(d >= 2)$$ {\mathrm{\mathbb{R}}}<^>d\kern0.1em \left(d\ge 2\right) $$, which can describe the memory effect and anomalous diffusion of the considered system. The local and global existence and uniqueness in weak Lp$$ {L}<^>p $$ space are obtained by means of abstract fixed point theorem. Moreover, we explore the asymptotic stability of solutions as time goes to infinity.
引用
收藏
页码:9814 / 9833
页数:20
相关论文
共 50 条
  • [1] Uniform regularity for a Keller-Segel-Navier-Stokes system
    Chen, Miaochao
    Lu, Shengqi
    Liu, Qilin
    APPLIED MATHEMATICS LETTERS, 2020, 107
  • [2] The Stokes Limit in a Three-Dimensional Keller-Segel-Navier-Stokes System
    Zhou, Ju
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (03) : 2157 - 2184
  • [3] On the Space-Time Analyticity of the Keller-Segel-Navier-Stokes System
    Abdo, Elie
    Hu, Zhongtian
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (03)
  • [4] Well-posedness of Keller-Segel-Navier-Stokes equations with fractional diffusion in Besov spaces
    Jiang, Ziwen
    Wang, Lizhen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [5] Singular limit problem for the Keller-Segel-Navier-Stokes system on torus
    Xiao, Shuofa
    Xu, Haiyan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 4345 - 4366
  • [6] Well-posedness and time decay of fractional Keller-Segel-Navier-Stokes equations in homogeneous Besov spaces
    Jiang, Ziwen
    Wang, Lizhen
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (08) : 3107 - 3142
  • [7] EXISTENCE OF SOLUTIONS TO THE PATLAK--KELLER--SEGEL--NAVIER--STOKES SYSTEM
    Gao, Yuetian
    Han, Fangyu
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (05) : 6798 - 6821
  • [8] Global existence of weak solutions for the 3D incompressible Keller-Segel-Navier-Stokes equations with partial diffusion
    Zhao, Jijie
    Chen, Xiaoyu
    Zhang, Qian
    APPLICABLE ANALYSIS, 2024, 103 (01) : 353 - 376
  • [9] Global solvability and asymptotic stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with indirect signal production
    Dai, Feng
    Liu, Bin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (10) : 2091 - 2163
  • [10] The stability analysis of a 2D Keller-Segel-Navier-Stokes system in fast signal diffusion
    Li, Min
    Xiang, Zhaoyin
    Zhou, Guanyu
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2023, 34 (01) : 160 - 209