A quantitative analysis of latitudinal variation of ionospheric total electron content and comparison with IRI-2020 over China

被引:7
作者
Yang, Yuyan [1 ,2 ,3 ]
Liu, Libo [1 ,2 ,3 ]
Zhao, Xiukuan [1 ,3 ]
Han, Tingwei [1 ,2 ,3 ]
Tariq, M. Arslan [1 ,2 ,3 ,4 ]
Chen, Yiding [1 ,2 ,5 ]
Zhang, Hui [1 ,2 ,3 ]
Le, Huijun [1 ,2 ,3 ]
Zhang, Ruilong [1 ,3 ]
Li, Wenbo [1 ,3 ]
Sun, Wenjie [1 ,5 ]
Li, Guozhu [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Earth & Planetary Phys, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Geol & Geophys, Heilongjiang Mohe Observ Geophys, Beijing, Peoples R China
[4] Natl Ctr Phys, Ctr Earthquake Studies, Islamabad, Pakistan
[5] Chinese Acad Sci, Inst Geol & Geophys, Beijing Natl Observ Space Environm, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Ionosphere; Latitudinal gradient; Total electron content; Global Navigation Satellite System; IRI-2020; F-REGION; DENSITY; LAYER; GRADIENT;
D O I
10.1016/j.asr.2023.05.040
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Many studies have investigated the spatial variations of the ionosphere, but the quantitative characteristics of the ionosphere are rarely reported. In this paper, we utilize the total electron content (TEC) data to evaluate the latitudinal gradient of the ionosphere within 10 degrees-50 degrees N over the China sector. It is found that the magnitudes of latitudinal gradient are significantly higher within 10 degrees-40 degrees N and 45 degrees 50 degrees N, respectively. The database of TEC from 1 November 2018 to 31 October 2022 is processed to figure out the local time, seasonal, and solar activity dependency of the latitudinal gradient. The results suggest that the gradient within 10 degrees-40 degrees N is higher in the daytime and during high solar activity period. They are more noticeable in the spring and autumn, and least visible in the summer. Conversely, the gradient within 45 degrees-50 degrees N strengthens in the nighttime and under lower solar activity, and has larger values in the summer months. Furthermore, the International Reference Ionosphere (IRI-2020) model is assessed in terms of the reproducibility of latitudinal gradient. The IRI-2020 basically represents the latitudinal gradient within 10 degrees-40 degrees N, whereas it overestimates the gradient in the low solar activity (c) 2023 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3808 / 3817
页数:10
相关论文
共 50 条
[31]   Modeling the global ionospheric total electron content with empirical orthogonal function analysis [J].
WeiXing Wan ;
Feng Ding ;
ZhiPeng Ren ;
ManLian Zhang ;
LiBo Liu ;
BaiQi Ning .
Science China Technological Sciences, 2012, 55 :1161-1168
[32]   Mapping of the Ionospheric Total Electron Content over the East African Low-Latitude Region [J].
Cele, Geoffrey ;
Andima, Geoffrey ;
Habyarimana, Valence ;
Jurua, Edward .
ADVANCES IN SPACE RESEARCH, 2023, 71 (10) :4410-4423
[33]   Observation of Low-Latitude Ionospheric Irregularities using Rate of Change of Total Electron Content over the Philippine Sector [J].
Juadines, Kyle Ezekiel S. ;
Macalalad, Ernest P. ;
Mendoza, Merlin M. .
2019 6TH INTERNATIONAL CONFERENCE ON SPACE SCIENCE AND COMMUNICATION (ICONSPACE2019), 2019, :112-115
[34]   Higher order ionospheric delay and derivation of regional total electron content over Ethiopian global positioning system stations [J].
Yehun, Asmamaw ;
Kassa, Tsegaye ;
Vermeer, Martin ;
Hunegnaw, Addisu .
ADVANCES IN SPACE RESEARCH, 2020, 66 (03) :612-630
[35]   Impact of semi-annual ionospheric total electron content variation on station displacements using single-frequency PPP [J].
Tseng, Tzu-Pang ;
Shum, C. K. ;
Hsiao, Yu-Shen ;
Kuo, Chung-Yen ;
Yeh, Wen-Hao .
TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 2021, 32 (04) :541-551
[36]   Solar cycle variation of ionospheric parameters over the low latitude station Hainan, China, during 2002-2012 and its comparison with IRI-2012 model [J].
Wang, G. J. ;
Shi, J. K. ;
Wang, Z. ;
Wang, X. ;
Romanova, E. ;
Ratovsky, K. ;
Polekh, N. M. .
ADVANCES IN SPACE RESEARCH, 2017, 60 (02) :381-395
[37]   Time series modeling and analysis of trends of daily averaged ionospheric total electron content [J].
Li, Shuhui ;
Peng, Junhuan ;
Xu, Weichao ;
Qin, Kun .
ADVANCES IN SPACE RESEARCH, 2013, 52 (05) :801-809
[38]   Variability of ionospheric total electron content at low-latitude station during twin solar maxima and solar minima of the 24th solar cycle and its comparison with different versions of IRI models [J].
Parwani, Mahesh ;
Mansoori, Azad Ahmad ;
Sharma, P. K. ;
Purohit, P. K. .
CURRENT SCIENCE, 2021, 121 (11) :1417-1424
[39]   Analysis of Global Ionospheric Response to Solar Flares Based on Total Electron Content and Very Low Frequency Signals [J].
Feng, Jiandi ;
Han, Baomin ;
Gao, Feng ;
Zhang, Ting ;
Zhao, Zhenzhen .
IEEE ACCESS, 2021, 9 :57618-57631
[40]   Regional ionospheric total electron content over Africa from ground-based GNSS observations [J].
Moses, M. ;
Dodo, J. D. ;
Ojigi, L. M. ;
Lawal, K. .
SOUTH AFRICAN JOURNAL OF GEOMATICS, 2021, 10 (01) :17-30