Deep Learning Image Reconstruction Algorithm for CCTA: Image Quality Assessment and Clinical Application

被引:4
作者
Catapano, Federica [1 ,2 ]
Lisi, Costanza [2 ]
Savini, Giovanni [3 ]
Olivieri, Marzia [4 ]
Figliozzi, Stefano [1 ]
Caracciolo, Alessandra [2 ]
Monti, Lorenzo [1 ,2 ]
Francone, Marco [1 ,2 ,5 ]
机构
[1] IRCCS Humanitas Res Hosp, Dept Radiol, Milan, Rozzano, Italy
[2] Humanitas Univ, Dept Biomed Sci, Milan, Pieve Emanuele, Italy
[3] IRCCS Humanitas Res Hosp, Neuroradiol Unit, Milan, Rozzano, Italy
[4] GD Annunzio Univ Chieti Pescara, Dept Neurosci Imaging & Clin Sci, Chieti, Italy
[5] Via Rita Levi Montalcini 4, I-20090 Milan, Pieve Emanuele, Italy
关键词
CCTA; DLIR; ASiR-V; low-dose protocols; coronary artery disease; CORONARY CT ANGIOGRAPHY; ITERATIVE RECONSTRUCTION; DOSE REDUCTION; RADIATION;
D O I
10.1097/RCT.0000000000001537
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: The increasing number of coronary computed tomography angiography (CCTA) requests raised concerns about dose exposure. New dose reduction strategies based on artificial intelligence have been proposed to overcome limitations of iterative reconstruction (IR) algorithms. Our prospective study sought to explore the added value of deep-learning image reconstruction (DLIR) in comparison with a hybrid IR algorithm (adaptive statistical iterative reconstruction-veo [ASiR-V]) in CCTA, even in clinical challenging scenarios, as obesity, heavily calcified vessels and coronary stents. Methods: We prospectively included 103 consecutive patients who underwent CCTA. Data sets were reconstructed with ASiR-V and DLIR. For each reconstruction signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) was calculated, and qualitative assessment was made with a four-point Likert scale by two independent and blinded radiologists with different expertise. Results: Both SNR and CNR were significantly higher in DLIR (SNR-DLIR median value [interquartile range] of 13.89 [11.06-16.35] and SNR-ASiR-V 25.42 [22.46-32.22], P < 0.001; CNR-DLIR 16.84 [9.83-27.08] vs CNR-ASiR-V 10.09 [5.69-13.5], P < 0.001). Median qualitative score was 4 for DLIR images versus 3 for ASiR-V (P < 0.001), with a good interreader reliability [intraclass correlation coefficient(2,1)e intraclass correlation coefficient(3,1) 0.60 for DLIR and 0.62 and 0.73 for ASiR-V]. In the obese and in the "calcifications and stents" groups, DLIR showed significantly higher values of SNR (24.23 vs 11.11, P < 0.001 and 24.55 vs 14.09, P < 0.001, respectively) and CNR (16.08 vs 8.04, P = 0.008 and 17.31 vs 10.14, P = 0.003) and image quality. Conclusions: Deep-learning image reconstruction in CCTA allows better SNR, CNR, and qualitative assessment than ASiR-V, with an added value in the most challenging clinical scenarios.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 29 条
[1]   Iterative reconstruction methods in X-ray CT [J].
Beister, Marcel ;
Kolditz, Daniel ;
Kalender, Willi A. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2012, 28 (02) :94-108
[2]   Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy [J].
Benz, Dominik C. ;
Benetos, Georgios ;
Rampidis, Georgios ;
von Felten, Elia ;
Bakula, Adam ;
Sustar, Aleksandra ;
Kudura, Ken ;
Messerli, Michael ;
Fuchs, Tobias A. ;
Gebhard, Catherine ;
Pazhenkottil, Aju P. ;
Kaufmann, Philipp A. ;
Buechel, Ronny R. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2020, 14 (05) :444-451
[3]   Minimized Radiation and Contrast Agent Exposure for Coronary Computed Tomography Angiography: First Clinical Experience on a Latest Generation 256-slice Scanner [J].
Benz, Dominik C. ;
Grani, Christoph ;
Moch, Beatrice Hirt ;
Mikulicic, Fran ;
Vontobel, Jan ;
Fuchs, Tobias A. ;
Stehli, Julia ;
Clerc, Olivier F. ;
Possner, Mathias ;
Pazhenkottil, Aju P. ;
Gaemperli, Oliver ;
Buechel, Ronny R. ;
Kaufmann, Philipp A. .
ACADEMIC RADIOLOGY, 2016, 23 (08) :1008-1014
[4]   Iterative reconstruction: Why, how and when? [J].
Blum, A. ;
Gervaise, A. ;
Teixeira, P. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2015, 96 (05) :421-422
[5]  
Chinnaiyan Kavitha M, 2009, J Cardiovasc Comput Tomogr, V3, P35, DOI 10.1016/j.jcct.2008.11.003
[6]  
CICCHETTI DV, 1981, AM J MENT DEF, V86, P127
[7]   Radiological outpatient' visits to avoid inappropriate cardiac CT examinations: an 8-year experience report [J].
De Rubeis, Gianluca ;
Marchitelli, Livia ;
Spano, Giulia ;
Catapano, Federica ;
Cilia, Francesco ;
Galea, Nicola ;
Carbone, Iacopo ;
Catalano, Carlo ;
Francone, Marco .
RADIOLOGIA MEDICA, 2021, 126 (02) :214-220
[8]   Diagnostic performance and image quality of deep learning image reconstruction (DLIR) on unenhanced low-dose abdominal CT for urolithiasis [J].
Delabie, Aurelien ;
Bouzerar, Roger ;
Pichois, Raphael ;
Desdoit, Xavier ;
Vial, Jeremie ;
Renard, Cedric .
ACTA RADIOLOGICA, 2022, 63 (09) :1283-1292
[9]   The current landscape of imaging recommendations in cardiovascular clinical guidelines: toward an imaging-guided precision medicine [J].
Esposito, Antonio ;
Gallone, Guglielmo ;
Palmisano, Anna ;
Marchitelli, Livia ;
Catapano, Federica ;
Francone, Marco .
RADIOLOGIA MEDICA, 2020, 125 (11) :1013-1023
[10]  
Galea Nicola, 2022, Eur J Radiol, V151, P110277, DOI 10.1016/j.ejrad.2022.110277