Hyper star structure connectivity of hierarchical folded cubic networks

被引:1
|
作者
Guo, Huimei [1 ]
Hao, Rong-Xia [1 ]
Chang, Jou-Ming [2 ]
Kwon, Young Soo [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Natl Taipei Univ Business, Inst Informat & Decis Sci, Taipei 10051, Taiwan
[3] Yeungnam Univ, Dept Math, Gyongsan 38541, South Korea
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Hierarchical folded cube; Structure connectivity; Hyper structure connected; Interconnection network; FAULT-TOLERANCE; COMPONENT;
D O I
10.1007/s11227-024-05992-3
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing popularity and diversity of network environments, it is crucial to assess the fault tolerance and stability of the network. Structure connectivity and substructure connectivity are two novel indicators that can better measure the network's fault tolerance compared to traditional connectivity. Additionally, analyzing a network's minimum structure cuts and minimum substructure cuts is an interesting and important subject. For a graph G, let R and M be two connected subgraphs of G. An R-structure cut (resp. R-substructure cut) of G is a set of subgraphs of G, such that each subgraph in the set is isomorphic to R (resp. is isomorphic to a connected subgraph of R), whose deletion disconnects G. If the removal of any minimum R-structure cut (resp. R-substructure cut) divides G into exactly two components, one of which is isomorphic to M, then G is referred to as hyper R|M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R|_{M}$$\end{document}-connected (resp. hyper sub-R|M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R|_{M}$$\end{document}-connected). This paper first studies the K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-structure connectivity and sub-K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-structure connectivity of hierarchical folded cubic network HFQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {HFQ}}_n$$\end{document}. Specifically, we determine both of them are left ceiling n+22 right ceiling \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil \frac{n+2}{2}\rceil$$\end{document} for n >= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 7$$\end{document} and 2 <= r <= n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le r\le n-1$$\end{document}. Then, we prove that HFQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {HFQ}}_n$$\end{document} is hyper K1,r|K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}|_{K_1}$$\end{document}-connected and hyper sub-K1,r|K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}|_{K_1}$$\end{document}-connected.
引用
收藏
页码:14224 / 14241
页数:18
相关论文
共 50 条
  • [31] On structure and substructure fault tolerance of star networks
    Lulu Yang
    Xiaohui Hua
    Yuxing Yang
    The Journal of Supercomputing, 2023, 79 : 9157 - 9179
  • [32] On structure and substructure fault tolerance of star networks
    Yang, Lulu
    Hua, Xiaohui
    Yang, Yuxing
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (08) : 9157 - 9179
  • [33] On conditional fault tolerance and diagnosability of hierarchical cubic networks
    Zhou, Shuming
    Song, Sulin
    Yang, Xiaoxue
    Chen, Lanxiang
    THEORETICAL COMPUTER SCIENCE, 2016, 609 : 421 - 433
  • [34] Connectivity of generalized hierarchical completely-connected networks
    Department of Information Science, Shonan Institute of Technology, 1-1-25, Tsjido-Nishikaigan, Fujisawa-shi, Kanagawa 251-8511, Japan
    不详
    J. Interconnect. Netw., 2008, 1-2 (127-139): : 127 - 139
  • [35] Structure and Substructure Connectivity of Hypercube-Like Networks
    Lin, Cheng-Kuan
    Cheng, Eddie
    Liptak, Laszlo
    PARALLEL PROCESSING LETTERS, 2020, 30 (03)
  • [36] CONNECTIVITY OF GENERALIZED HIERARCHICAL COMPLETELY-CONNECTED NETWORKS
    Takabatake, Toshinori
    Nakamigawa, Tomoki
    Ito, Hideo
    JOURNAL OF INTERCONNECTION NETWORKS, 2008, 9 (1-2) : 127 - 139
  • [37] Structure connectivity and substructure connectivity of k-ary n-cube networks
    Lv, Yali
    Fan, Jianxi
    Hsu, D. Frank
    Lin, Cheng-Kuan
    INFORMATION SCIENCES, 2018, 433 : 115 - 124
  • [38] Structure connectivity and substructure connectivity of n$-cube networks
    Zhang G.
    Wang D.
    IEEE Access, 2019, 7 : 134496 - 134504
  • [39] Subversion analyses of hierarchical networks based on (edge) neighbor connectivity
    Gu, Mei-Mei
    Pai, Kung-Jui
    Chang, Jou-Ming
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2023, 171 : 54 - 65
  • [40] Star structure connectivity of cayley graphs generated by transposition trees
    Kaige Pan
    Dongqin Cheng
    The Journal of Supercomputing, 2023, 79 : 4398 - 4411