Hyper star structure connectivity of hierarchical folded cubic networks

被引:1
|
作者
Guo, Huimei [1 ]
Hao, Rong-Xia [1 ]
Chang, Jou-Ming [2 ]
Kwon, Young Soo [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Natl Taipei Univ Business, Inst Informat & Decis Sci, Taipei 10051, Taiwan
[3] Yeungnam Univ, Dept Math, Gyongsan 38541, South Korea
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Hierarchical folded cube; Structure connectivity; Hyper structure connected; Interconnection network; FAULT-TOLERANCE; COMPONENT;
D O I
10.1007/s11227-024-05992-3
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing popularity and diversity of network environments, it is crucial to assess the fault tolerance and stability of the network. Structure connectivity and substructure connectivity are two novel indicators that can better measure the network's fault tolerance compared to traditional connectivity. Additionally, analyzing a network's minimum structure cuts and minimum substructure cuts is an interesting and important subject. For a graph G, let R and M be two connected subgraphs of G. An R-structure cut (resp. R-substructure cut) of G is a set of subgraphs of G, such that each subgraph in the set is isomorphic to R (resp. is isomorphic to a connected subgraph of R), whose deletion disconnects G. If the removal of any minimum R-structure cut (resp. R-substructure cut) divides G into exactly two components, one of which is isomorphic to M, then G is referred to as hyper R|M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R|_{M}$$\end{document}-connected (resp. hyper sub-R|M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R|_{M}$$\end{document}-connected). This paper first studies the K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-structure connectivity and sub-K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-structure connectivity of hierarchical folded cubic network HFQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {HFQ}}_n$$\end{document}. Specifically, we determine both of them are left ceiling n+22 right ceiling \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil \frac{n+2}{2}\rceil$$\end{document} for n >= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 7$$\end{document} and 2 <= r <= n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le r\le n-1$$\end{document}. Then, we prove that HFQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {HFQ}}_n$$\end{document} is hyper K1,r|K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}|_{K_1}$$\end{document}-connected and hyper sub-K1,r|K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}|_{K_1}$$\end{document}-connected.
引用
收藏
页码:14224 / 14241
页数:18
相关论文
共 50 条
  • [21] Structure connectivity of folded crossed cubes based on faulty stars
    Guo, Huimei
    Hao, Rong-Xia
    Mamut, Aygul
    Chang, Jou-Ming
    Wu, Jie
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, : 3803 - 3832
  • [22] The 4-set tree connectivity of hierarchical folded hypercube
    Wang, Junzhen
    Zou, Jinyu
    Zhang, Shumin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (03) : 2097 - 2114
  • [23] Connectivity and super connectivity of enhanced folded hypercube-like networks
    Guo, Litao
    Ning, Wantao
    DISCRETE APPLIED MATHEMATICS, 2025, 369 : 14 - 19
  • [24] Hyper star structure fault tolerance of half hypercube
    Yang, Lulu
    Zhou, Shuming
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16) : 23609 - 23627
  • [25] The decycling problem in hierarchical cubic networks
    Antoine Bossard
    The Journal of Supercomputing, 2014, 69 : 293 - 305
  • [26] The decycling problem in hierarchical cubic networks
    Bossard, Antoine
    JOURNAL OF SUPERCOMPUTING, 2014, 69 (01) : 293 - 305
  • [27] Structure connectivity of data center networks
    Ba, Lina
    Zhang, Heping
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 451
  • [28] On conditional fault tolerance of hierarchical cubic networks
    Li, Xiang-Jun
    Liu, Min
    Yan, Zheng
    Xu, Jun-Ming
    THEORETICAL COMPUTER SCIENCE, 2019, 761 : 1 - 6
  • [29] Extra Connectivity and Structure Connectivity of 2-Dimensional Torus Networks
    Cheng, Dongqin
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2022, 33 (02) : 155 - 173
  • [30] Structure connectivity and substructure connectivity of wheel networks
    Feng, Wei
    Wang, Shiying
    THEORETICAL COMPUTER SCIENCE, 2021, 850 : 20 - 29