On the Existence of Eigenvalues of the Three-Particle Discrete Schrödinger Operator

被引:0
作者
Abdullaev, J. I. [1 ]
Boymurodov, J. K. [2 ]
Khalkhuzhaev, A. M. [3 ]
机构
[1] Samarkand State Univ, Samarkand 140104, Uzbekistan
[2] Navoi State Pedag Inst, Navoi 706800, Uzbekistan
[3] Uzbek Acad Sci, VI Romanovskiy Inst Math, Tashkent 100174, Uzbekistan
关键词
Schrodinger operator; lattice; Hamiltonian; zero-range potential; boson; eigenvalue; total quasimomentum; invariant subspace; Faddeev operator; SCHRODINGER OPERATOR; BOUND-STATES; SPECTRUM; SYSTEM;
D O I
10.1134/S0001434623110019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the three-particle Schr odinger operator H-mu,H-lambda,H-gamma(K),K is an element of T-3, associated with a system of three particles (of which two are bosons with mass1and one is arbitrary with mass m=1/gamma <1) coupled by pairwise contact potentials mu > 0 and lambda > 0 on the three-dimensional lattice Z(3). We prove that there exist critical mass ratio values gamma= gamma(1)and gamma =gamma(2) such that for sufficiently large mu>0 and fixed lambda> 0 the operator H-mu,H-lambda,H-gamma (0),0=(0,0,0), has at least one eigenvalue lying to the left of the essential spectrum for gamma is an element of(0,gamma(1)), at least two such eigenvalues for gamma is an element of(gamma(1),gamma(2)), and at least four such eigenvalues for gamma is an element of(gamma(2),+infinity)
引用
收藏
页码:645 / 658
页数:14
相关论文
共 23 条
[1]   THE EXISTENCE OF EIGENVALUES OF SCHRO?DINGER OPERATOR ON THREE DIMENSIONAL LATTICE [J].
Abdullaev, J. I. ;
Khalkhuzhaev, A. M. ;
Kuliev, K. D. .
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2022, 28 (03) :189-208
[2]  
Albeverio S, 2004, ANN HENRI POINCARE, V5, P743, DOI [10.1007/s00023-004-0181-9, 10.1007/S00023-004-0181-9]
[3]   A CLASS OF EXACTLY SOLVABLE 3-BODY QUANTUM-MECHANICAL PROBLEMS AND THE UNIVERSAL LOW-ENERGY BEHAVIOR [J].
ALBEVERIO, S ;
HOEGHKROHN, R ;
WU, TT .
PHYSICS LETTERS A, 1981, 83 (03) :105-109
[4]   EFIMOVS EFFECT - NEW PATHOLOGY OF 3-PARTICLE SYSTEMS [J].
AMADO, RD ;
NOBLE, JV .
PHYSICS LETTERS B, 1971, B 35 (01) :25-&
[5]   ENERGY LEVELS ARISING FROM RESONANT 2-BODY FORCES IN A 3-BODY SYSTEM [J].
EFIMOV, V .
PHYSICS LETTERS B, 1970, B 33 (08) :563-&
[6]  
Faddeev LD., 1993, QUANTUM SCATTERING T, DOI [10.1007/978-94-017-2832-4, DOI 10.1007/978-94-017-2832-4]
[7]   BOUND STATES OF THE SCHRODINGER OPERATOR OF A SYSTEM OF THREE BOSONS ON A LATTICE [J].
Lakaev, S. N. ;
Khalmukhamedov, A. R. ;
Khalkhuzhaev, A. M. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 188 (01) :994-1005
[8]   The existence of bound states in a system of three particles in an optical lattice [J].
Lakaev, Saidakhmat N. ;
Lakaev, Shukhrat S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (33)
[9]   Existence of an isolated band in a system of three particles in an optical lattice [J].
Lakaev, Saidakhmat N. ;
Dell'Antonio, Gianfausto ;
Khalkhuzhaev, Ahmad M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (14)
[10]   Essential and discrete spectra of the three-particle Schrodinger operator on a lattice [J].
Lakaev, SN ;
Muminov, MÉ .
THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 135 (03) :849-871