Existence and approximation of fixed points of enriched contractions in quasi-Banach spaces

被引:3
作者
Berinde, Vasile [1 ,2 ]
机构
[1] Tehn Univ Cluj Napoca, North Univ Ctr Baia Mare, Dept Math & Comp Sci, Victoriei 76, Baia Mare 430122, Romania
[2] Acad Romanian Scientists, 3 Ilfov, Bucharest 050044, Romania
关键词
quasi-Banach space; quasi-norm; b-metric; contraction; fixed point; Krasnoselskij iteration; NONEXPANSIVE-MAPPINGS; THEOREMS;
D O I
10.37193/CJM.2024.02.03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain results on the existence and approximation of fixed points of enriched contractions in quasi-Banach spaces and thus extend the previous results for enriched contractions defined on Banach spaces [Berinde, V.; Pacurar, M. Approximating fixed points of enriched contractions in Banach spaces. J. Fixed Point Theory Appl. 22 (2020), no. 2, Paper No. 38, 10 pp.]. The theoretical results are illustrated by means of an appropriate example of enriched contraction on a quasi-Banach space which is not a Banach space and thus show that our new results are effective generalizations of the previous ones in literature.
引用
收藏
页码:263 / 274
页数:12
相关论文
共 62 条
[51]   AN EXAMPLE REGARDING KALTON'S PAPER 'ISOMORPHISMS BETWEEN SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS' [J].
Sanchez, Felix Cabello .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2021, 64 (03) :615-619
[52]  
Shukla R., 2023, Abstr. Appl. Anal.
[53]   Some fixed point results for enriched nonexpansive type mappings in Banach spaces [J].
Shukla, Rahul ;
Pant, Rajendra .
APPLIED GENERAL TOPOLOGY, 2022, 23 (01) :31-43
[54]   Some fixed point theorems for generalized enriched nonexpansive mappings in Banach spaces [J].
Shukla, Rahul ;
Panicker, Rekha .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) :1087-1101
[55]   Existence of fixed points of weak enriched nonexpansive mappings in Banach spaces [J].
Suantai, Suthep ;
Chumpungam, Dawan ;
Sarnmeta, Panitarn .
CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (02) :287-294
[56]   WELL-POSED BAYESIAN INVERSE PROBLEMS AND HEAVY-TAILED STABLE QUASI-BANACH SPACE PRIORS [J].
Sullivan, T. J. .
INVERSE PROBLEMS AND IMAGING, 2017, 11 (05) :857-874
[58]  
Tikhonov A. N., 1935, MATH ANN, P767, DOI [DOI 10.1007/BF01472256, 10.1007/BF01472256]
[59]  
Torres R.H., 2018, J. Anal, V26, P227, DOI DOI 10.1007/S41478-018-0144-Z
[60]  
Vulpe I.M., 1981, Math. Sci., Interuniv. Work Collect., V1981, P14