Existence and approximation of fixed points of enriched contractions in quasi-Banach spaces

被引:3
作者
Berinde, Vasile [1 ,2 ]
机构
[1] Tehn Univ Cluj Napoca, North Univ Ctr Baia Mare, Dept Math & Comp Sci, Victoriei 76, Baia Mare 430122, Romania
[2] Acad Romanian Scientists, 3 Ilfov, Bucharest 050044, Romania
关键词
quasi-Banach space; quasi-norm; b-metric; contraction; fixed point; Krasnoselskij iteration; NONEXPANSIVE-MAPPINGS; THEOREMS;
D O I
10.37193/CJM.2024.02.03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain results on the existence and approximation of fixed points of enriched contractions in quasi-Banach spaces and thus extend the previous results for enriched contractions defined on Banach spaces [Berinde, V.; Pacurar, M. Approximating fixed points of enriched contractions in Banach spaces. J. Fixed Point Theory Appl. 22 (2020), no. 2, Paper No. 38, 10 pp.]. The theoretical results are illustrated by means of an appropriate example of enriched contraction on a quasi-Banach space which is not a Banach space and thus show that our new results are effective generalizations of the previous ones in literature.
引用
收藏
页码:263 / 274
页数:12
相关论文
共 62 条
[1]  
Abbas M., 2023, Topol. Algebra Appl., V11
[2]   Approximation of fixed points of enriched asymptotically nonexpansive mappings in CAT(0) spaces [J].
Abbas, Mujahid ;
Anjum, Rizwan ;
Ismail, Nimra .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (04) :2409-2427
[3]  
Albiac F., 2022, Positivity, V26
[4]   EXISTENCE AND ESTIMATION OF THE FIXED POINTS OF ENRICHED BERINDE NONEXPANSIVE MAPPINGS [J].
Ali, Javid ;
Jubair, Mohd .
MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) :541-552
[5]   Fixed points theorems for enriched non-expansive mappings in geodesic spaces [J].
Ali, Javid ;
Jubair, Mohd .
FILOMAT, 2023, 37 (11) :3403-3409
[6]   On monotone pseudocontractive operators and Krasnoselskij iterations in an ordered Hilbert space [J].
Alvarez, Eduardo Daniel Jorquera .
ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (02) :297-307
[7]   Common Fixed Point Theorem for Modified Kannan Enriched Contraction Pair in Banach Spaces and Its Applications [J].
Anjum, Rizwan ;
Abbas, Mujahid .
FILOMAT, 2021, 35 (08) :2485-2495
[8]  
[Anonymous], 1974, Topologie Generale
[9]  
[Anonymous], 1996, Atti Sem. Mat. Fis. Univ. Modena
[10]  
Bakhtin I., 1989, Funct. Anal, V30, P26, DOI DOI 10.1039/AP9892600037