Bi-primitive 2-arc-transitive bi-Cayley graphs

被引:0
|
作者
Li, Jing Jian [1 ]
Zhang, Xiao Qian [1 ]
Zhou, Jin-Xin [2 ]
机构
[1] Guangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-Cayley graph; Biprimitive; 2-arc-transitive; ARC-TRANSITIVE GRAPHS; PERMUTATION-GROUPS; ORDER; THEOREM;
D O I
10.1007/s10801-024-01297-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bipartite graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a bi-Cayley graph over a group H if H <= Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\leqslant \textrm{Aut}\Gamma $$\end{document} acts regularly on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. A bi-Cayley graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is said to be a normal bi-Cayley graph over H if H ⊴Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\unlhd \textrm{Aut}\Gamma $$\end{document}, and bi-primitive if the bipartition preserving subgroup of Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Aut}\Gamma $$\end{document} acts primitively on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. In this paper, a classification is given for 2-arc-transitive bi-Cayley graphs which are bi-primitive and non-normal.
引用
收藏
页码:711 / 734
页数:24
相关论文
共 50 条
  • [31] On cubic semisymmetric bi-Cayley graphs on nonabelian simple groups
    Pan, Jiangmin
    Zhang, Yingnan
    AIMS MATHEMATICS, 2022, 7 (07): : 12689 - 12701
  • [32] Cubic edge-transitive bi-Cayley graphs over inner-abelian p-groups
    Qin, Yan-Li
    Zhou, Jin-Xin
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) : 1973 - 1984
  • [33] Countable locally 2-arc-transitive bipartite graphs
    Gray, R. D.
    Truss, J. K.
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 39 : 122 - 147
  • [34] Symmetric bi-Cayley graphs on nonabelian simple groups with prime valency
    Zhang, Yingnan
    Pan, Jiangmin
    Wang, Chao
    Huang, Junjie
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [35] Perfect state transfer on bi-Cayley graphs over abelian groups
    Wang, Shixin
    Feng, Tao
    DISCRETE MATHEMATICS, 2023, 346 (06)
  • [36] 2-Arc-transitive metacyclic covers of complete graphs
    Xu, Wenqin
    Du, Shaofei
    Kwak, Jin Ho
    Xu, Mingyao
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 111 : 54 - 74
  • [37] On 2-arc-transitive graphs admitting a vertex-transitive simple group
    Lu, Zai Ping
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (01) : 18 - 34
  • [38] A classification result about basic 2-arc-transitive graphs
    Li, Jing Jian
    Lu, Zai Ping
    Song, Ruo Yu
    Zhang, Xiao Qian
    DISCRETE MATHEMATICS, 2024, 347 (11)
  • [39] ON FINITE GROUPS ALL OF WHOSE BI-CAYLEY GRAPHS OF BOUNDED VALENCY ARE INTEGRAL
    Arezoomand, Majid
    TRANSACTIONS ON COMBINATORICS, 2021, 10 (04) : 247 - 252
  • [40] Perfect state transfer on weighted bi-Cayley graphs over abelian groups
    Wang, Shixin
    Feng, Tao
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 451