Bi-primitive 2-arc-transitive bi-Cayley graphs

被引:0
作者
Li, Jing Jian [1 ]
Zhang, Xiao Qian [1 ]
Zhou, Jin-Xin [2 ]
机构
[1] Guangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-Cayley graph; Biprimitive; 2-arc-transitive; ARC-TRANSITIVE GRAPHS; PERMUTATION-GROUPS; ORDER; THEOREM;
D O I
10.1007/s10801-024-01297-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bipartite graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a bi-Cayley graph over a group H if H <= Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\leqslant \textrm{Aut}\Gamma $$\end{document} acts regularly on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. A bi-Cayley graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is said to be a normal bi-Cayley graph over H if H ⊴Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\unlhd \textrm{Aut}\Gamma $$\end{document}, and bi-primitive if the bipartition preserving subgroup of Aut Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Aut}\Gamma $$\end{document} acts primitively on each part of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. In this paper, a classification is given for 2-arc-transitive bi-Cayley graphs which are bi-primitive and non-normal.
引用
收藏
页码:711 / 734
页数:24
相关论文
共 41 条
[1]   Primitive permutation groups with a regular subgroup [J].
Baumeister, Barbara .
JOURNAL OF ALGEBRA, 2007, 310 (02) :569-618
[2]  
Bray JN, 2013, LOND MATH S, V407, P1, DOI 10.1017/CBO9781139192576
[3]  
Cameron Peter J., 1999, Permutation groups, V45, DOI DOI 10.1017/CBO9780511623677
[4]   ON WEAKLY SYMMETRICAL GRAPHS OF ORDER TWICE A PRIME [J].
CHENG, Y ;
OXLEY, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 42 (02) :196-211
[5]  
CONDER M, 2002, J COMBIN MATH COMBIN, V40
[6]   Edge-transitive bi-Cayley graphs [J].
Conder, Marston ;
Zhou, Jin-Xin ;
Feng, Yan-Quan ;
Zhang, Mi-Mi .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 :264-306
[7]  
CONWAY JS, 1985, ALA AGR EXP STA BULL, P1
[8]  
Dixon JD., 1996, Permutation Groups, DOI DOI 10.1007/978-1-4612-0731-3
[9]   Finite two-arc transitive graphs admitting a Suzuki simple group [J].
Fang, XG ;
Praeger, CE .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (08) :3727-3754
[10]   DOUBLY PRIMITIVE VERTEX STABILIZERS IN GRAPHS [J].
GARDINER, A .
MATHEMATISCHE ZEITSCHRIFT, 1974, 135 (03) :257-266