Deep learning in MRI-guided radiation therapy: A systematic review

被引:4
作者
Eidex, Zach [1 ,2 ,3 ]
Ding, Yifu [1 ,2 ]
Wang, Jing [1 ,2 ]
Abouei, Elham [1 ,2 ]
Qiu, Richard L. J. [1 ,2 ]
Liu, Tian [4 ]
Wang, Tonghe [5 ]
Yang, Xiaofeng [1 ,2 ,3 ,6 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA USA
[3] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA USA
[4] Icahn Sch Med Mt Sinai, Dept Radiat Oncol, New York, NY USA
[5] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY USA
[6] Emory Univ Sch Med, Dept Radiat Oncol, 1365 Clifton Rd NE, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
deep learning; MRI-guided; radiation therapy; radiotherapy; review; COMPUTED-TOMOGRAPHY; AUTO-SEGMENTATION; NEURAL-NETWORK; CT GENERATION; HEAD; IMAGES; PROSTATE; CANCER; TUMOR;
D O I
10.1002/acm2.14155
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Recent advances in MRI-guided radiation therapy (MRgRT) and deep learning techniques encourage fully adaptive radiation therapy (ART), real-time MRI monitoring, and the MRI-only treatment planning workflow. Given the rapid growth and emergence of new state-of-the-art methods in these fields, we systematically review 197 studies written on or before December 31, 2022, and categorize the studies into the areas of image segmentation, image synthesis, radiomics, and real time MRI. Building from the underlying deep learning methods, we discuss their clinical importance and current challenges in facilitating small tumor segmentation, accurate x-ray attenuation information from MRI, tumor characterization and prognosis, and tumor motion tracking. In particular, we highlight the recent trends in deep learning such as the emergence of multi-modal, visual transformer, and diffusion models.
引用
收藏
页数:21
相关论文
共 158 条
[1]   QAIS-DSNN: Tumor Area Segmentation of MRI Image with Optimized Quantum Matched-Filter Technique and Deep Spiking Neural Network [J].
Ahmadi, Mohsen ;
Sharifi, Abbas ;
Hassantabar, Shayan ;
Enayati, Saman .
BIOMED RESEARCH INTERNATIONAL, 2021, 2021
[2]  
Alom MZ, 2018, ARXIV, DOI [DOI 10.48550/ARXIV.1802.06955, 10.48550/arXiv.1802.06955]
[3]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[4]  
[Anonymous], 2016, ARXIV, DOI DOI 10.48550/ARXIV.1606.04797
[5]  
Arjovsky M, WASSERSTEINGAN
[6]   PSA-Net: Deep learning-based physician style-aware segmentation network for postoperative prostate cancer clinical target volumes [J].
Balagopal, Anjali ;
Morgan, Howard ;
Dohopolski, Michael ;
Timmerman, Ramsey ;
Shan, Jie ;
Heitjan, Daniel F. ;
Liu, Wei ;
Nguyen, Dan ;
Hannan, Raquibul ;
Garant, Aurelie ;
Desai, Neil ;
Jiang, Steve .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 121
[7]  
Behjatnia B, 2010, INT J CLIN EXP PATHO, V3, P303
[8]   SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining [J].
Billot, Benjamin ;
Greve, Douglas N. ;
Puonti, Oula ;
Thielscher, Axel ;
Van Leemput, Koen ;
Fischl, Bruce ;
Dalca, Adrian V. ;
Iglesias, Juan Eugenio .
MEDICAL IMAGE ANALYSIS, 2023, 86
[9]   Improving generalization in MR-to-CT synthesis in radiotherapy by using an augmented cycle generative adversarial network with unpaired data [J].
Boni, Evin N. D. Brou ;
Klein, John ;
Gulyban, Akos ;
Reynaert, Nick ;
Pasquier, David .
MEDICAL PHYSICS, 2021, 48 (06) :3003-3010
[10]   Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting [J].
Bouget, David ;
Pedersen, Andre ;
Jakola, Asgeir S. ;
Kavouridis, Vasileios ;
Emblem, Kyrre E. ;
Eijgelaar, Roelant S. ;
Kommers, Ivar ;
Ardon, Hilko ;
Barkhof, Frederik ;
Bello, Lorenzo ;
Berger, Mitchel S. ;
Nibali, Marco Conti ;
Furtner, Julia ;
Hervey-Jumper, Shawn ;
Idema, Albert J. S. ;
Kiesel, Barbara ;
Kloet, Alfred ;
Mandonnet, Emmanuel ;
Muller, Domenique M. J. ;
Robe, Pierre A. ;
Rossi, Marco ;
Sciortino, Tommaso ;
van den Brink, Wimar A. ;
Wagemakers, Michiel ;
Widhalm, Georg ;
Witte, Marnix G. ;
Zwinderman, Aeilko H. ;
De Witt Hamer, Philip C. ;
Solheim, Ole ;
Reinertsen, Ingerid .
FRONTIERS IN NEUROLOGY, 2022, 13