Bayesian Inference With Nonlinear Generative Models: Comments on Secure Learning

被引:1
作者
Bereyhi, Ali [1 ,2 ]
Loureiro, Bruno [3 ,4 ]
Krzakala, Florent [3 ]
Mueller, Ralf R. [1 ]
Schulz-Baldes, Hermann [5 ]
机构
[1] Friedrich Alexander Univ FAU Erlangen Nurnberg, Inst Digital Commun IDC, D-91058 Erlangen, Germany
[2] Univ Toronto, Wireless Comp Lab WCL, Toronto, ON M5S 2E4, Canada
[3] Ecole Polytech Fed Lausanne EPFL, Informat Learning & Phys Lab IdePHICS, CH-1015 Lausanne, Switzerland
[4] Ecole Normale Super, Ctr Data Sci, F-75230 Paris, France
[5] Friedrich Alexander Univ FAU Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
关键词
Bayes methods; Nonlinear optics; Information theory; Glass; Encoding; Statistical learning; Load modeling; Nonlinear generative models; Bayesian inference; Gaussian random fields; information-theoretically secure learning; replica method; decoupling principle; STATISTICAL-MECHANICS; SYSTEM-ANALYSIS; MAP ESTIMATION; SPIN-GLASSES; SIGNALS; INFORMATION; CODES; CDMA; ASYMPTOTICS; EFFICIENCY;
D O I
10.1109/TIT.2023.3325187
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unlike the classical linear model, nonlinear generative models have been addressed sparsely in the literature of statistical learning. This work aims to shed light on these models and their secrecy potential. To this end, we invoke the replica method to derive the asymptotic normalized cross entropy in an inverse probability problem whose generative model is described by a Gaussian random field with a generic covariance function. Our derivations further demonstrate the asymptotic statistical decoupling of the Bayesian estimator and specify the decoupled setting for a given nonlinear model. The replica solution depicts that strictly nonlinear models establish an all-or-nothing phase transition: there exists a critical load at which the optimal Bayesian inference changes from perfect to an uncorrelated learning. Based on this finding, we design a new secure coding scheme which achieves the secrecy capacity of the wiretap channel. This interesting result implies that strictly nonlinear generative models are perfectly secured without any secure coding. We justify this latter statement through the analysis of an illustrative model for perfectly secure and reliable inference.
引用
收藏
页码:7998 / 8028
页数:31
相关论文
共 92 条
  • [11] Mutual Information and Optimality of Approximate Message-Passing in Random Linear Estimation
    Barbier, Jean
    Macris, Nicolas
    Dia, Mohamad
    Krzakala, Florent
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (07) : 4270 - 4303
  • [12] Optimal errors and phase transitions in high-dimensional generalized linear models
    Barbier, Jean
    Krzakala, Florent
    Macris, Nicolas
    Miolane, Leo
    Zdeborova, Lenka
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (12) : 5451 - 5460
  • [13] Barbier J, 2018, IEEE INT SYMP INFO, P1390, DOI 10.1109/ISIT.2018.8437522
  • [14] Barbier J, 2016, ANN ALLERTON CONF, P625, DOI 10.1109/ALLERTON.2016.7852290
  • [15] Barbier J, 2014, IEEE INT SYMP INFO, P1494, DOI 10.1109/ISIT.2014.6875082
  • [16] Bereyhi Ali, 2016, 2016 IEEE Information Theory Workshop (ITW), P379, DOI 10.1109/ITW.2016.7606860
  • [17] Bereyhi A., 2020, Statistical mechanics of regularized least squares
  • [18] Bereyhi A., 2022, P IEEE INT S INF THE, P1193
  • [19] Detection of Spatially Modulated Signals via RLS: Theoretical Bounds and Applications
    Bereyhi, Ali
    Asaad, Saba
    Gade, Bernhard
    Muller, Ralf R.
    Poor, H. Vincent
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (04) : 2291 - 2304
  • [20] Statistical Mechanics of MAP Estimation: General Replica Ansatz
    Bereyhi, Ali
    Mueller, Ralf R.
    Schulz-Baldes, Hermann
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (12) : 7896 - 7934