Prediction of the basic density of tropical woods by near-infrared spectroscopy

被引:7
作者
de Medeiros, Dayane Targino [1 ]
de Melo, Rafael Rodolfo [2 ]
de Cademartori, Pedro Henrique Gonzalez [3 ]
Batista, Felipe Gomes [1 ]
Mascarenhas, Adriano Reis Prazeres [4 ]
Scatolino, Mario Vanoli [2 ]
Hein, Paulo Ricardo Gherardi [1 ]
机构
[1] Univ Fed Lavras, Dept Forest Sci, Lavras, MG, Brazil
[2] Fed Rural Univ Semiarid Reg, Agr Sci Ctr, Mossoro, RN, Brazil
[3] Univ Fed Parana, Dept Ind Wood Engn & Forestry Engn, Curitiba, PR, Brazil
[4] Fed Univ Rondonia, Dept Forest Engn, Rolim De Moura, RO, Brazil
关键词
Multivariate statistics; Non-destructive analysis; Amazonian species; wood identification; classification; MODELS; MOISTURE; SPECTRA; CHIPS; NIR;
D O I
10.1590/01047760202329013262
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Background: Determining the basic density of the wood is usually defined as a simple process, but it requires caution and the operator's skill to avoid errors in the analysis. In addition, it involves sample preparation and time to saturate the wood until obtaining the dry sample mass. The development of alternative measurement techniques could reduce the time to obtain the results and provide reliable values. Therefore, this study aimed to develop multivariate models to estimate the basic density of native woods using near-infrared spectra (NIR). Basic densities were determined by the water immersion method, and the values were associated with NIR signatures. Spectra were directly collected on the wood transversal and radial faces with an integrating sphere. Partial least squares regression (PLS-R) was calibrated and validated to estimate basic density based on spectral signatures. Results: In the cross-validation and prediction of the models, the results were promising. The coefficients of determination varied from 0.87 to 0.93 with a standard error of 0.01 %. The partial least squares discriminant analysis (PLS-DA) efficiently classified the wood species. The ratio of performance to deviation obtained satisfactory values, a minimum of 2.81 and a maximum of 4.20. Conclusion: The statistical parameters of the models based on NIR spectra showed potential for density measurements in floors, furniture, and solid wood products.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Evaluating basic density calibrations based on NIR spectra recorded on the three wood faces and subject to different mathematical treatments [J].
Amaral, Evelize A. ;
dos Santos, Luana M. ;
Hein, Paulo R. G. ;
Costa, Emylle V. S. ;
Rosado, Sebastiao Carlos S. ;
Trugilho, Paulo F. .
NEW ZEALAND JOURNAL OF FORESTRY SCIENCE, 2021, 51 :1-7
[2]   ESTIMATION OF MOISTURE IN WOOD CHIPS BY NEAR INFRARED SPECTROSCOPY [J].
Amaral, Evelize A. ;
Santos, Luana M. ;
Costa, Emylle V. S. ;
Trugilho, Paulo E. ;
Hein, Paulo R. G. .
MADERAS-CIENCIA Y TECNOLOGIA, 2020, 22 (03) :291-302
[3]  
Arriela TG, 2019, CERNE, V25, P294
[4]  
ASTM, 2022, ASTM D2395-17
[5]   Predictive capacity of some wood properties by near-infrared spectroscopy [J].
Ayanleye, Samuel ;
Avramidis, Stavros .
INTERNATIONAL WOOD PRODUCTS JOURNAL, 2021, 12 (02) :83-94
[6]   Characterization of Amazon woods [J].
de Medeiros, Dayane Targino ;
de Melo, Rafael Rodolfo ;
Gonzalez de Cademartori, Pedro Henrique ;
Batista, Felipe Gomes ;
Prazeres Mascarenhas, Adriano Reis .
MADERA Y BOSQUES, 2021, 27 (02)
[7]  
Dias A. C. C., 2018, Ciencia da Madeira, V9, P37, DOI [10.12953/2177-6830/rcm.v9n1p37-44, 10.12953/2177-6830/rcm.v9n1p37-44]
[8]   Near-infrared spectroscopy and wavelength selection for estimating basic density in Mimosa tenuiflora [Willd.] Poiret wood [J].
Diesel, Katarine M. F. ;
da Costa, Fernanda S. L. ;
Pimenta, Alexandre S. ;
de Lima, Kassio M. G. .
WOOD SCIENCE AND TECHNOLOGY, 2014, 48 (05) :949-959
[9]   Characterization of technological properties of mata-mata wood (Eschweilera coriacea [DC.] SA Mori, E. odora Poepp. [Miers] and E. truncata AC Sm.) by Near Infrared Spectroscopy [J].
do Nascimento, Cristiano Souza ;
do Nascimento, Claudete Catanhede ;
de Araujo, Roberto Daniel ;
Rodrigues Soares, Jose Carlos ;
Higuchi, Niro .
IFOREST-BIOGEOSCIENCES AND FORESTRY, 2021, 14 :400-407
[10]  
Embrapa Florestas, 2016, Revista Ciência da Madeira - RCM, V7, P119, DOI [10.12953/2177-6830/rcm.v7n3p119-126, 10.12953/2177-6830/rcm.v7n3p119-126, DOI 10.12953/2177-6830/RCM.V7N3P119-126]