Turning Privacy-preserving Mechanisms against Federated Learning

被引:5
|
作者
Arazzi, Marco [1 ]
Conti, Mauro [2 ,3 ]
Nocera, Antonino [1 ]
Picek, Stjepan [3 ,4 ]
机构
[1] Univ Pavia, Pavia, Italy
[2] Univ Padua, Padua, Italy
[3] Delft Univ Technol, Delft, Netherlands
[4] Radboud Univ Nijmegen, Nijmegen, Netherlands
来源
PROCEEDINGS OF THE 2023 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, CCS 2023 | 2023年
关键词
Federated Learning; Graph Neural Network; Model Poisoning; Privacy; Recommender Systems;
D O I
10.1145/3576915.3623114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, researchers have successfully employed Graph Neural Networks (GNNs) to build enhanced recommender systems due to their capability to learn patterns from the interaction between involved entities. In addition, previous studies have investigated federated learning as the main solution to enable a native privacy-preserving mechanism for the construction of global GNN models without collecting sensitive data into a single computation unit. Still, privacy issues may arise as the analysis of local model updates produced by the federated clients can return information related to sensitive local data. For this reason, researchers proposed solutions that combine federated learning with Differential Privacy strategies and community-driven approaches, which involve combining data from neighbor clients to make the individual local updates less dependent on local sensitive data. In this paper, we identify a crucial security flaw in such a configuration and design an attack capable of deceiving state-of-the-art defenses for federated learning. The proposed attack includes two operating modes, the first one focusing on convergence inhibition (Adversarial Mode), and the second one aiming at building a deceptive rating injection on the global federated model (Backdoor Mode). The experimental results show the effectiveness of our attack in both its modes, returning on average 60% performance detriment in all the tests on Adversarial Mode and fully effective backdoors in 93% of cases for the tests performed on Backdoor Mode.
引用
收藏
页码:1482 / 1495
页数:14
相关论文
共 50 条
  • [41] Privacy-Preserving Decentralized Aggregation for Federated Learning
    Jeon, Beomyeol
    Ferdous, S. M.
    Rahmant, Muntasir Raihan
    Walid, Anwar
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [42] GAIN: Decentralized Privacy-Preserving Federated Learning
    Jiang, Changsong
    Xu, Chunxiang
    Cao, Chenchen
    Chen, Kefei
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 78
  • [43] Privacy-Preserving and Reliable Distributed Federated Learning
    Dong, Yipeng
    Zhang, Lei
    Xu, Lin
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT I, 2024, 14487 : 130 - 149
  • [44] A Privacy-Preserving and Verifiable Federated Learning Scheme
    Zhang, Xianglong
    Fu, Anmin
    Wang, Huaqun
    Zhou, Chunyi
    Chen, Zhenzhu
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [45] Improved Privacy-Preserving Aggregation for Federated Learning
    Li, Yu
    Han, Yiliang
    Zhou, Tanping
    Xie, Huiyu
    Wu, Xuguang
    Song, Chaoyue
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 272 - 276
  • [46] AN EXPLORATION OF FEDERATED LEARNING FOR PRIVACY-PRESERVING MACHINE LEARNING
    Kumar, K. Kiran
    Rao, Thalakola Syamsundara
    Vullam, Nagagopiraju
    Vellela, Sai Srinivas
    Jyosthna, B.
    Farjana, Shaik
    Javvadi, Sravanthi
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [47] Privacy-Preserving Machine Learning Using Federated Learning and Secure Aggregation
    Lia, Dragos
    Togan, Mihai
    PROCEEDINGS OF THE 2020 12TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2020), 2020,
  • [48] Toward Secure Weighted Aggregation for Privacy-Preserving Federated Learning
    He, Yunlong
    Yu, Jia
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 3475 - 3488
  • [49] Privacy-preserving in Blockchain-based Federated Learning systems
    Sameera, K. M.
    Nicolazzo, Serena
    Arazzi, Marco
    Nocera, Antonino
    Rehiman, K. A. Rafidha
    Vinod, P.
    Conti, Mauro
    COMPUTER COMMUNICATIONS, 2024, 222 : 38 - 67
  • [50] VPPFL: Verifiable Privacy-Preserving Federated Learning in Cloud Environment
    Wang, Huiyong
    Yang, Tengfei
    Ding, Yong
    Tang, Shijie
    Wang, Yujue
    IEEE ACCESS, 2024, 12 : 151998 - 152008