Turning Privacy-preserving Mechanisms against Federated Learning

被引:5
|
作者
Arazzi, Marco [1 ]
Conti, Mauro [2 ,3 ]
Nocera, Antonino [1 ]
Picek, Stjepan [3 ,4 ]
机构
[1] Univ Pavia, Pavia, Italy
[2] Univ Padua, Padua, Italy
[3] Delft Univ Technol, Delft, Netherlands
[4] Radboud Univ Nijmegen, Nijmegen, Netherlands
来源
PROCEEDINGS OF THE 2023 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, CCS 2023 | 2023年
关键词
Federated Learning; Graph Neural Network; Model Poisoning; Privacy; Recommender Systems;
D O I
10.1145/3576915.3623114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, researchers have successfully employed Graph Neural Networks (GNNs) to build enhanced recommender systems due to their capability to learn patterns from the interaction between involved entities. In addition, previous studies have investigated federated learning as the main solution to enable a native privacy-preserving mechanism for the construction of global GNN models without collecting sensitive data into a single computation unit. Still, privacy issues may arise as the analysis of local model updates produced by the federated clients can return information related to sensitive local data. For this reason, researchers proposed solutions that combine federated learning with Differential Privacy strategies and community-driven approaches, which involve combining data from neighbor clients to make the individual local updates less dependent on local sensitive data. In this paper, we identify a crucial security flaw in such a configuration and design an attack capable of deceiving state-of-the-art defenses for federated learning. The proposed attack includes two operating modes, the first one focusing on convergence inhibition (Adversarial Mode), and the second one aiming at building a deceptive rating injection on the global federated model (Backdoor Mode). The experimental results show the effectiveness of our attack in both its modes, returning on average 60% performance detriment in all the tests on Adversarial Mode and fully effective backdoors in 93% of cases for the tests performed on Backdoor Mode.
引用
收藏
页码:1482 / 1495
页数:14
相关论文
共 50 条
  • [31] Privacy-preserving federated learning on lattice quantization
    Zhang, Lingjie
    Zhang, Hai
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (06)
  • [32] Privacy-Preserving and Reliable Decentralized Federated Learning
    Gao, Yuanyuan
    Zhang, Lei
    Wang, Lulu
    Choo, Kim-Kwang Raymond
    Zhang, Rui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2879 - 2891
  • [33] A Personalized Privacy-Preserving Scheme for Federated Learning
    Li, Zhenyu
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1352 - 1356
  • [34] POSTER: Privacy-preserving Federated Active Learning
    Kurniawan, Hendra
    Mambo, Masahiro
    SCIENCE OF CYBER SECURITY, SCISEC 2022 WORKSHOPS, 2022, 1680 : 223 - 226
  • [35] AddShare: A Privacy-Preserving Approach for Federated Learning
    Asare, Bernard Atiemo
    Branco, Paula
    Kiringa, Iluju
    Yeap, Tet
    COMPUTER SECURITY. ESORICS 2023 INTERNATIONAL WORKSHOPS, PT I, 2024, 14398 : 299 - 309
  • [36] RFed: Robustness-Enhanced Privacy-Preserving Federated Learning Against Poisoning Attack
    Miao, Yinbin
    Yan, Xinru
    Li, Xinghua
    Xu, Shujiang
    Liu, Ximeng
    Li, Hongwei
    Deng, Robert H.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 5814 - 5827
  • [37] PPFLV: privacy-preserving federated learning with verifiability
    Zhou, Qun
    Shen, Wenting
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12727 - 12743
  • [38] Double Perturbation-Based Privacy-Preserving Federated Learning against Inference Attack
    Jiang, Yongqi
    Shi, Yanhang
    Chen, Siguang
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5451 - 5456
  • [39] Contribution Measurement in Privacy-Preserving Federated Learning
    Hsu, Ruei-hau
    Yu, Yi-an
    Su, Hsuan-cheng
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2024, 40 (06) : 1173 - 1196
  • [40] Privacy-Preserving Federated Learning in Fog Computing
    Zhou, Chunyi
    Fu, Anmin
    Yu, Shui
    Yang, Wei
    Wang, Huaqun
    Zhang, Yuqing
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (11): : 10782 - 10793