Turning Privacy-preserving Mechanisms against Federated Learning

被引:5
|
作者
Arazzi, Marco [1 ]
Conti, Mauro [2 ,3 ]
Nocera, Antonino [1 ]
Picek, Stjepan [3 ,4 ]
机构
[1] Univ Pavia, Pavia, Italy
[2] Univ Padua, Padua, Italy
[3] Delft Univ Technol, Delft, Netherlands
[4] Radboud Univ Nijmegen, Nijmegen, Netherlands
来源
PROCEEDINGS OF THE 2023 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, CCS 2023 | 2023年
关键词
Federated Learning; Graph Neural Network; Model Poisoning; Privacy; Recommender Systems;
D O I
10.1145/3576915.3623114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, researchers have successfully employed Graph Neural Networks (GNNs) to build enhanced recommender systems due to their capability to learn patterns from the interaction between involved entities. In addition, previous studies have investigated federated learning as the main solution to enable a native privacy-preserving mechanism for the construction of global GNN models without collecting sensitive data into a single computation unit. Still, privacy issues may arise as the analysis of local model updates produced by the federated clients can return information related to sensitive local data. For this reason, researchers proposed solutions that combine federated learning with Differential Privacy strategies and community-driven approaches, which involve combining data from neighbor clients to make the individual local updates less dependent on local sensitive data. In this paper, we identify a crucial security flaw in such a configuration and design an attack capable of deceiving state-of-the-art defenses for federated learning. The proposed attack includes two operating modes, the first one focusing on convergence inhibition (Adversarial Mode), and the second one aiming at building a deceptive rating injection on the global federated model (Backdoor Mode). The experimental results show the effectiveness of our attack in both its modes, returning on average 60% performance detriment in all the tests on Adversarial Mode and fully effective backdoors in 93% of cases for the tests performed on Backdoor Mode.
引用
收藏
页码:1482 / 1495
页数:14
相关论文
共 50 条
  • [21] Privacy-Preserving Heterogeneous Personalized Federated Learning With Knowledge
    Pan, Yanghe
    Su, Zhou
    Ni, Jianbing
    Wang, Yuntao
    Zhou, Jinhao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5969 - 5982
  • [22] Privacy-Preserving Federated Learning Model for Healthcare Data
    Ul Islam, Tanzir
    Ghasemi, Reza
    Mohammed, Noman
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 281 - 287
  • [23] Federated Learning With Privacy-Preserving Ensemble Attention Distillation
    Gong, Xuan
    Song, Liangchen
    Vedula, Rishi
    Sharma, Abhishek
    Zheng, Meng
    Planche, Benjamin
    Innanje, Arun
    Chen, Terrence
    Yuan, Junsong
    Doermann, David
    Wu, Ziyan
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (07) : 2057 - 2067
  • [24] A Novel Approach for Differential Privacy-Preserving Federated Learning
    Elgabli, Anis
    Mesbah, Wessam
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2025, 6 : 466 - 476
  • [25] Staged Noise Perturbation for Privacy-Preserving Federated Learning
    Li, Zhe
    Chen, Honglong
    Gao, Yudong
    Ni, Zhichen
    Xue, Huansheng
    Shao, Huajie
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (06): : 936 - 947
  • [26] Hercules: Boosting the Performance of Privacy-Preserving Federated Learning
    Xu, Guowen
    Han, Xingshuo
    Xu, Shengmin
    Zhang, Tianwei
    Li, Hongwei
    Huang, Xinyi
    Deng, Robert H.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (05) : 4418 - 4433
  • [27] A Framework for Privacy-Preserving in IoV Using Federated Learning With Differential Privacy
    Adnan, Muhammad
    Syed, Madiha Haider
    Anjum, Adeel
    Rehman, Semeen
    IEEE ACCESS, 2025, 13 : 13507 - 13521
  • [28] Efficient Privacy-Preserving Federated Learning Against Inference Attacks for IoT
    Miao, Yifeng
    Chen, Siguang
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [29] PPeFL: Privacy-Preserving Edge Federated Learning With Local Differential Privacy
    Wang, Baocang
    Chen, Yange
    Jiang, Hang
    Zhao, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15488 - 15500
  • [30] Secure and Privacy-Preserving Federated Learning via Co-Utility
    Domingo-Ferrer, Josep
    Blanco-Justicia, Alberto
    Manjon, Jesus
    Sanchez, David
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (05): : 3988 - 4000