Efficient Metal-Halide Perovskite Photovoltaic Cells Deposited via Vapor Transport Deposition

被引:2
|
作者
Hsu, Wan-Ju [1 ]
Pettit, Emma C. [1 ]
Swartwout, Richard [2 ]
Kadosh, Tamar Zhitomirsky [3 ]
Srinivasan, Shreyas [4 ]
Wassweiler, Ella L. [2 ]
Haugstad, Greg [5 ]
Bulovic, Vladimir [2 ]
Holmes, Russell J. [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, 412 Washington Ave SE, Minneapolis, MN 55455 USA
[2] MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02142 USA
[3] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02142 USA
[4] MIT, Dept Chem Engn, 77 Massachusetts Ave, Cambridge, MA 02142 USA
[5] Univ Minnesota, Characterizat Facil, 100 Union St SE, Minneapolis, MN 55455 USA
关键词
codeposition; metal-halide perovskites; methylammonium lead iodide; n-i-p photovoltaic cells; perovskite solar cells; vapor transport deposition; SOLAR-CELLS; SCALABLE FABRICATION; LEAD IODIDE; PERFORMANCE; PRESSURE; MAPBI(3); PHASE; PBI2;
D O I
10.1002/solr.202300758
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Photovoltaic cells based on metal-halide perovskites have exceeded the performance of other thin film technologies and rival the performance of devices based on archetypical silicon. Attractively, the perovskite active layer can be processed via a variety of solution- and vapor-based methods. Herein, emphasis is on the use of vapor transport codeposition (VTD) to process efficient n-i-p photovoltaic cells based on methylammonium lead iodide (MAPbI(3)). VTD utilizes a hot-walled reactor operated under moderate vacuum in the range of 0.5-10 Torr. The organic and metal-halide precursors are heated with the resulting vapor transported by a N-2 carrier gas to a cooled substrate where they condense and react to form a perovskite film. The efficiency of photovoltaic devices based on VTD-processed MAPbI(3) is found to be highest in films with excess lead iodide content, with champion devices realizing exceeding 12%.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Control over Crystal Size in Vapor Deposited Metal-Halide Perovskite Films
    Lohmann, Kilian B.
    Patel, Jay B.
    Rothmann, Mathias Uller
    Xia, Chelsea Q.
    Oliver, Robert D. J.
    Herz, Laura M.
    Snaith, Henry J.
    Johnston, Michael B.
    ACS ENERGY LETTERS, 2020, 5 (03): : 710 - 717
  • [2] The path toward metal-halide perovskite industrialization
    Giuri, Antonella
    Mastria, Rosanna
    Rizzo, Aurora
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (10):
  • [3] Metal halide perovskite solar cells by modified chemical vapor deposition
    Qiu, Longbin
    He, Sisi
    Jiang, Yan
    Qi, Yabing
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (40) : 22759 - 22780
  • [4] Metal-Halide Perovskite Lasers: Cavity Formation and Emission Characteristics
    Moon, Jiyoung
    Mehta, Yash
    Gundogdu, Kenan
    So, Franky
    Gu, Qing
    ADVANCED MATERIALS, 2024, 36 (20)
  • [5] Metal-Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities
    Lin, Yen-Hung
    Pattanasattayavong, Pichaya
    Anthopoulos, Thomas D.
    ADVANCED MATERIALS, 2017, 29 (46)
  • [6] Impact of Photoluminescence Reabsorption in Metal-Halide Perovskite Solar Cells
    Wang, Mingcong
    Wang, Kai
    Gao, Yajun
    Khan, Jafar I.
    Yang, Wenchao
    De Wolf, Stefaan
    Laquai, Frederic
    SOLAR RRL, 2021, 5 (05)
  • [7] Synergetic Passivation of Metal-Halide Perovskite with Fluorinated Phenmethylammonium toward Efficient Solar Cells and Modules
    Zhu, Yanqing
    Lv, Pin
    Hu, Min
    Raga, Sonia R.
    Yin, Huiyu
    Zhang, Yuxi
    An, Ziqi
    Zhu, Qinglong
    Luo, Gan
    Li, Wangnan
    Huang, Fuzhi
    Lira-Cantu, Monica
    Cheng, Yi-Bing
    Lu, Jianfeng
    ADVANCED ENERGY MATERIALS, 2023, 13 (08)
  • [8] Stabilizing Metal Halide Perovskite Films via Chemical Vapor Deposition and Cryogenic Electron Beam Patterning
    Burns, Randy
    Chiaro, Dylan
    Davison, Harrison
    Arendse, Christopher J.
    King, Gavin M.
    Guha, Suchismita
    SMALL, 2024,
  • [9] Environmentally friendly, aqueous processed ZnO as an efficient electron transport layer for low temperature processed metal-halide perovskite photovoltaics
    Zhang, Jiaqi
    Morbidoni, Maurizio
    Huang, Keke
    Feng, Shouhua
    McLachlan, Martyn A.
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (01): : 84 - 89
  • [10] Key Roles of Interfaces in Inverted Metal-Halide Perovskite Solar Cells
    Li, Yue
    Wang, Yuhua
    Xu, Zichao
    Peng, Bo
    Li, Xifei
    ACS NANO, 2024, 18 (16) : 10688 - 10725