MUTUAL CHANNELS LOSS AND CHANNEL-WISE ATTENTION AIDED CONVOLUTIONAL AUTOENCODER FOR HYPERSPECTRAL IMAGE UNMIXING

被引:0
作者
Banda, Nithish Reddy [1 ]
Ghorai, Mrinmoy [1 ]
Roy, Swalpa Kumar [2 ]
机构
[1] Indian Inst Informat Technol, Sri City 517646, Andhra Pradesh, India
[2] Jalpaiguri Govt Engn Coll, Jalpaiguri 75102, West Bengal, India
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
Channel-wise Attention; Mutual Information; Mutual Channels Loss; Hyperspectral Unmixing; Autoencoder;
D O I
10.1109/IGARSS52108.2023.10281673
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Hyperspectral imaging is a valuable tool for analyzing and understanding remote sensing data. Our research paper presents a pioneering method for hyperspectral unmixing through the utilization of a convolutional autoencoder (CAE). To train the CAE, our approach incorporates mutual channels loss (MCL) as a loss function, and we implement channel-wise attention within the CAE architecture. Furthermore, we conduct experiments using two datasets, namely the Samson and Apex hyperspectral datasets, to compare the outcomes of our approach against those achieved by state-of-the-art methods. Our findings demonstrate that our suggested approach achieves significant improvements in terms of accuracy, efficiency and being robust as compared to existing methods. These results highlight the potential of our approach for improving hyperspectral unmixing in a range of remote sensing applications.
引用
收藏
页码:7408 / 7411
页数:4
相关论文
共 17 条
  • [1] [Anonymous], 2017, LEARNING DEEP REPRES
  • [2] Atar R, 2011, IEEE INT SYMP INFO, P708, DOI 10.1109/ISIT.2011.6034225
  • [3] Spectral Variability in Hyperspectral Data Unmixing
    Borsoi, Ricardo
    Imbiriba, Tales
    Bermudez, Jose Carlos
    Richard, Cedric
    Chanussot, Jocelyn
    Drumetz, Lucas
    Tourneret, Jean-Yves
    Zare, Alina
    Jutten, Christian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (04) : 223 - 270
  • [4] The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification
    Chang, Dongliang
    Ding, Yifeng
    Xie, Jiyang
    Bhunia, Ayan Kumar
    Li, Xiaoxu
    Ma, Zhanyu
    Wu, Ming
    Guo, Jun
    Song, Yi-Zhe
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 4683 - 4695
  • [5] SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning
    Chen, Long
    Zhang, Hanwang
    Xiao, Jun
    Nie, Liqiang
    Shao, Jian
    Liu, Wei
    Chua, Tat-Seng
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6298 - 6306
  • [6] Hyperspectral Image Unmixing With Endmember Bundles and Group Sparsity Inducing Mixed Norms
    Drumetz, Lucas
    Meyer, Travis R.
    Chanussot, Jocelyn
    Bertozzi, Andrea L.
    Jutten, Christian
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (07) : 3435 - 3450
  • [7] Hyperspectral unmixing using deep convolutional autoencoder
    Elkholy, Menna M.
    Mostafa, Marwa
    Ebied, Hala M.
    Tolba, Mohamed F.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (12) : 4797 - 4817
  • [8] Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    Heinz, DC
    Chang, CI
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (03): : 529 - 545
  • [9] Hu J., 2019, SQUEEZE AND EXCIATIO
  • [10] Convolutional Autoencoder for Spectral Spatial Hyperspectral Unmixing
    Palsson, Burkni
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 535 - 549