The price of anarchy for a berth allocation game

被引:1
|
作者
Pan, Jiayin [3 ]
Chen, Cong [1 ,2 ]
Xu, Yinfeng [3 ,4 ]
机构
[1] Guangzhou Univ, Sch Management, Guangzhou, Peoples R China
[2] South China Univ Technol, Sch Business Adm, Guangzhou, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Management, Xian, Peoples R China
[4] State Key Lab Mfg Syst Engn, Xian, Peoples R China
关键词
Berth allocation game; Price of anarchy; Multiprocessor task scheduling;
D O I
10.1007/s10951-023-00791-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we investigate a berth allocation game involving m identical berths and n vessels. Each vessel selfishly selects a consecutive set of berths for unloading, with the objective of minimizing its own cost represented by the maximum load among the chosen berths. The social cost is defined as the makespan, i.e., the maximum load over all berths. Our game generalizes classical machine scheduling games where jobs (vessels) may require multiple consecutive machines (berths). We analyze the price of anarchy (PoA) of the berth allocation game, which quantifies the impact of selfish behaviors of vessels. Specifically, we first consider a special case where each job can occupy at most two consecutive machines, and derive exact upper and lower bounds for the PoA based on the number of machines m. We show that the PoA asymptotically approaches 94\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{9}{4}$$\end{document}. For the general case where each job can occupy an arbitrary number of consecutive machines, we obtain a tight bound for the PoA, which is Theta logmloglogm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta \left( \frac{\log m}{\log \log m}\right) $$\end{document}.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [41] The Price of Anarchy of Generic Valid Utility Systems
    Yang, Yin
    Nong, Qingqin
    Gong, Suning
    Du, Jingwen
    Liang, Yumei
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2021, 2021, 13135 : 224 - 233
  • [42] Price of Anarchy for Graphic Matroid Congestion Games
    Fokkema, Wouter
    Hoeksma, Ruben
    Uetz, Marc
    ALGORITHMIC GAME THEORY, SAGT 2024, 2024, 15156 : 371 - 388
  • [43] Strong price of anarchy for machine load balancing
    Fiat, Amos
    Kaplan, Haim
    Levy, Meital
    Olonetsky, Svetlana
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 583 - +
  • [44] The price of anarchy in routing games as a function of the demand
    Cominetti, Roberto
    Dose, Valerio
    Scarsini, Marco
    MATHEMATICAL PROGRAMMING, 2024, 203 (1-2) : 531 - 558
  • [45] The price of anarchy on uniformly related machines revisited
    Epstein, Leah
    van Stee, Rob
    INFORMATION AND COMPUTATION, 2012, 212 : 37 - 54
  • [46] Measuring Market Performance with Stochastic Demand: Price of Anarchy and Price of Uncertainty
    Melolidakis, Costis
    Leonardos, Stefanos
    Koki, Constandina
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS, BELIEF 2018, 2018, 11069 : 163 - 171
  • [47] Price of Anarchy in Algorithmic Matching of Romantic Partners
    Abeliuk, Andres
    Elbassioni, Khaled
    Rahwan, Talal
    Cebrian, Manuel
    Rahwan, Iyad
    ACM TRANSACTIONS ON ECONOMICS AND COMPUTATION, 2024, 12 (01)
  • [48] EXACT PRICE OF ANARCHY FOR POLYNOMIAL CONGESTION GAMES
    Aland, Sebastian
    Dumrauf, Dominic
    Gairing, Martin
    Monien, Burkhard
    Schoppmann, Florian
    SIAM JOURNAL ON COMPUTING, 2011, 40 (05) : 1211 - 1233
  • [49] The local and global price of anarchy of graphical games
    Ben-Zwi, Oren
    Ronen, Amir
    ALGORITHMIC GAME THEORY, PROCEEDINGS, 2008, 4997 : 255 - +
  • [50] The "Price of anarchy" under Nonlinear and asymmetric costs
    Perakis, Georgia
    MATHEMATICS OF OPERATIONS RESEARCH, 2007, 32 (03) : 614 - 628